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ABSTRACT

Web search query logs, which record the interactions between the search engine
and its users, are valuable resources for Information Retrieval (IR) research. For years,
such query logs have been supporting multiple IR applications and have significantly
promoted the advance of IR research. However, releasing query logs without proper
anonymization may lead to serious violations of user privacy. As a result, concerns
about user privacy have become major obstacles preventing these resources from
being available for research use. This dissertation addresses the challenge of query log
anonymization, in order to keep advancing IR research.

Particularly, this dissertation presents my research on query log anonymization
by differential privacy. Anonymization of query logs differs from that of structured
data because query logs are generated based on natural language, whose vocabulary
is infinite. To mitigate the challenges in query log anonymization, I propose to use
a differentially private mechanism to generate anonymized query logs containing suf-
ficient contextual information for existing web search algorithms to use and attain
meaningful results. I empirically validate the effectiveness of my framework for gen-
erating usable and privacy-preserving logs for web search. Experiments show that it

is possible to maintain high utility for this task while guaranteeing sufficient privacy.
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In addition, this dissertation also proposes my expended research on query log
anonymization to involve session data. My previous work on session search has
shown that such search sessions are essential resources to support complex IR tasks.
Although researchers have recently proposed approaches to histogram-based data
release of query logs, how session data in query logs can be released differentially pri-
vately with meaningful utility remains unclear. By proposing a differentially private
query log anonymization algorithm to release session data, my research resolves this
significant concern about how to properly release and use the session information
of query logs. Moreover, I use two typical IR applications, query suggestion and
session search, to examine utility of anonymized logs and privacy-utility tradeoff of
the session-based query log anonymization work.

In summary, by resolving concerns in both privacy and utility aspects, this disser-
tation provides theoretical frameworks and practical implementations of query log
anonymization by differential privacy. It serves as an important step towards an
ultimate solution to the general challenge of data anonymization in real-world IR
applications. I hope this work can not only benefit the research in this particular
task of query log anonymization but also inspire more research in privacy-preserving

Information Retrieval (PPIR) and other data-driven research domains.

INDEX WORDS:  Differential Privacy, Information Retrieval, Query Log Anonymiza-

tion, Document Retrieval
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CHAPTER 1

INTRODUCTION

We are living in an era of enormous data sharing and data availability on the Internet.
Nowadays, the data pervasiveness has resulted in the emergence of services tailored
to extract, search, aggregate, and mine data in meaningful ways [132|. While it is
likely that many users of online services understand that they are sharing personal
information with strangers, they may not understand the potential risks and impli-
cations of doing so. In fact, high levels of exposed information can lead to severe
consequences such as stalking [101], identity theft [104], and job loss [114]. More-
over, it has been a growing research topic to understand the data that users are
willing to share and the level of sensitivity associated with it. For instance, there
has been an emerging interest in linking individuals across online social networks
[38, 49, 50, 51, 52, 74, 77, 82, 86, 127|. My previous work [98, 136| also examines this
problem of quantifiable measuring of online privacy risks. It is clear that there have
been more and more privacy concerns about web users’ online data.

Being more specific, the rapid development of big data, social networks, mobile
services and the growing popularity of digital communications have also profoundly

changed Information Retrieval (IR) research. Many recent advances in IR research rely
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on sensitive and private data such as large-scale query logs, users’ search history, and
location information. It is understandable that the sensitive and private data is kept
within the commercial companies without being shared with the research community
in general. However, the concern of privacy sometimes is so overwhelming that it
has hurt IR research in the past. For instance, the TREC Medical Record Retrieval
Tracks [112] are halted because of the privacy issue and the TREC Microblog Tracks
[73] could not provide participants with a standard testbed of tweets to ensure a fair
comparison. The proper use of privacy techniques to empower privacy-preserving IR
[125] research should be studied promptly.

It is perfectly understandable but still disappointing that user privacy has become
an obstacle that prevents data release and interferes with the advance of research in
IR. It is a boon for IR researchers that the large volume of textual data offers the
perfect playground for developing new information retrieval algorithms. However, the
sharing of large amounts of data, some of which are sensitive, presents challenges with
regards to data privacy.

In this dissertation, I present my research on query log anonymization by differ-
ential privacy to address such privacy concerns and resolve obstacles. In this chapter,
I first give a general introduction to the background and challenges in query log
anonymization. After presenting my high-level solutions to those challenges, I will
present the major tasks involved in this thesis. At the end of this chapter, I give the

outline of the entire thesis.



1.1 BACKGROUND

After the release of the web’s first primitive search engine W3Catalog in 1993, search
engines have significantly changed our daily life and became the most popular way
to search for information. Nowadays, massive web users all over the world frequently
interact with the search engine by submitting search queries, reviewing the search
result pages, and clicking some of the retrieved webpages. In the meantime, the search
engines record major interactions with their users to form an important type of log
data, which is the web search query log. As a type of large-scale online user data, query
log becomes very valuable and have been widely used to promote IR research. How-
ever, privacy concerns about the data also raised according, especially when releasing
the query log to a third party. How privacy risks influence the search engine and its
users? How privacy risks influences IR research? What earlier attempts have been

proposed for query log anonymization? I provide these background as follows.

1.1.1 HOW PRIVACY RISKS INFLUENCE THE SEARCH ENGINE AND ITS USERS

Releasing query logs without proper anonymization may lead to serious violations of
users’ privacy. As a consequence, the violations of users’ privacy may also ruin the
reputation of the search engine. A severe incident happened in 2006 when America
Online (AOL) released an insufficiently anonymized version of their query log [1] and

raised serious social, legal, and financial issues for the company.



The only “anonymization” technique applied to this AOL query log was to replace
the user id value by a hash code. This technique was far from keeping the user infor-
mation anonymized because an adversary can learn a lot by combining all the search
records from each user according to the hashed user id. Soon after the AOL release,
the identity of an old widow was identified from the log reported by a New York
Times article as shown in Figure 1.1 which says: “It did not take much investigating
to follow that data trail to Thelma Arnold, a 62-year-old widow who lives in Lilburn,
Ga., frequently researches her friends’ medical ailments and loves her three dogs...
AOL removed the search data from its site over the weekend and apologized for its
release, saying it was an unauthorized move by a team that had hoped it would benefit
academic researchers... My goodness, it’s my whole personal life’, she said. ‘I had no
idea somebody was looking over my shoulder.’ In response, she plans to drop her AOL
subscription. ‘We all have a right to privacy,” she said. ‘Nobody should have found
this all out.” ” This incident raised severe social and legal issues for AOL due to the
massive privacy concern from the public. Actually, as I mentioned earlier, exposed
personal information may lead to consequences such as stalking [101], identity theft
[104], and job loss [114]. Since then, web search companies have refused to release any
query logs, even for research purposes. Table 1.1 shows a sample of the AOL query

log.

Thttp: / /www.nytimes.com /2006 /08 /09 /technology /09aol.html? r=1&



Table 1.1: A

sample of the AOL query log.

UserID Query Query Time Webpage Rank Clicked Web Page
479 family guy movie references 2006-03-03 22:37:46 1 http://www.familyguyfiles.com
479 top grossing movies of all time 2006-03-03 22:42:42 1 http://movieweb.com
479 top grossing movies of all time 2006-03-03 22:42:42 2 http://www.imdb.com
479 car decals 2006-03-03 23:20:12 4 http://www.decaljunky.com
479 car decals 2006-03-03 23:20:12 1 http://www.modernimage.net
479 car decals 2006-03-03 23:20:12 5 http://www.webdecal.com
479 car window decals 2006-03-03 23:24:05 9 http://www.customautotrim.com
479 car window sponsor decals 2006-03-03 23:27:17 3 http://www.streetglo.net
479 car sponsor decals 2006-03-03 23:28:59
479 car brand name decals 2006-03-03 23:29:35
479 brand name decals 2006-03-03 23:29:58
479 bose 2006-03-03 23:30:11 1 http://www.bose.com
479 bose car decal 2006-03-03 23:31:48 1 http://stickers.signprint.co.uk
479 bose car decal 2006-03-03 23:31:48 1 http://stickers.signprint.co.uk
479 bose car decal 2006-03-03 23:31:48 7 http://www.motorcitydecals.com
479 chicago the mix 2006-03-04 22:11:31 1 http://www.wtmx.com
479 chicago the drive 2006-03-04 22:14:51 2 http://www.wdrv.com
479 chicago radio annoucer whip 2006-03-04 22:16:07
479 chicago radio whip 2006-03-04 22:16:27
479 chicago radio brian the whipping boy 2006-03-04 22:17:00 1 http://www.djheadlines.com
479 emma watson 2006-03-04 23:05:53 1 http://www.imdb.com
479 stanford encyclopedia of philosophy  2006-03-06 21:57:14 1 http://plato.stanford.edu
479 internet encyclopedia of philosophy  2006-03-06 21:59:30 1 http://www.iep.utm.edu
479 www library philosophy 2006-03-06 22:01:29 2 http://www.bris.ac.uk
479 allegory of the cave 2006-03-06 22:03:19 1 http://faculty. washington.edu
479 allegory of the cave 2006-03-06 22:03:19 2 http://www.wsu.edu:8080
479 allegory of the cave 2006-03-06 22:03:19 6 http://en.wikipedia.org
479 citation machine 2006-03-06 22:57:22 1 http://citationmachine.net
479 howard stern lawsuit 2006-03-08 00:14:55
479 sirius playboy 2006-03-08 17:23:07 3 http://www.orbitcast.com
479 opec 2006-03-09 09:19:29
479 citation machine 2006-03-13 18:25:12 1 http://citationmachine.net
479 wto history 2006-03-13 18:26:09 1 http://depts.washington.edu
479 wto history 2006-03-13 18:26:09 3 http://www.pbs.org
479 wto history 2006-03-13 18:26:09 4 http://www.wto.org
479 wikpedia 2006-03-13 18:29:21 1 http://en.wikipedia.org
479 britannica 2006-03-13 18:41:09 1 http://www.britannica.com
479 wto 2006-03-13 18:44:23 1 http://www.wto.org
479 wto history 2006-03-13 18:48:27
479 wto history 2006-03-13 18:48:35 1 http://depts.washington.edu
479 wto history 2006-03-13 18:48:35 4 http://www.wto.org
479 wto history 2006-03-13 18:48:35 6 http://www2.netdoor.com
479 wto history 2006-03-13 18:48:35 7 http://www.econ.iastate.edu
479 wto history 2006-03-13 18:48:35 9 http://cyberjournal.org
479 wto history 2006-03-13 18:48:35 2 http://depts.washington.edu
479 wto history 2006-03-13 18:48:35 4 http://www.wto.org
479 www.galleryhost.com 2006-03-15 01:13:14
479 prairie state college student email ~ 2006-03-20 23:15:59 3 http://students.prairiestate.edu
479 ronny van zant 2006-03-22 00:23:17
479 ronnie van zant 2006-03-22 00:23:55
479 zack wylde 2006-03-22 00:25:01
479 zack wylde lead singer 2006-03-22 00:26:26
479 ozzy guitarist 2006-03-22 00:27:44 1 http://www.ultimate-guitar.com
479 www.whitesox.xom 2006-03-22 11:38:16




Che New ﬁm-k Times By MICHAEL BARBARO and TOM ZELLER Jr.
Published: August 9, 2006

<A Face Is Exposed for AOL Search No.4417749>

“Thelma Arnold’s identity was betrayed by
AOL records of her Web searches, like ones for
her dog, Dudley, who clearly has a problem.”

“It did not take much investigating to follow
that data trail to Thelma Arnold, a 62-year-old
widow who lives in Lilburn, Ga., frequently
researches her friends’ medical ailments and
loves her three dogs.”

“AOL removed the search data from its site
over the weekend and apologized for its
release, saying it was an unauthorized move
by a team that had hoped it would benefit
academic researchers.” = NYT

Figure 1.1: A user’s identity was identified from the released AOL query log, according
to an article from The New York Times.

1.1.2 HOW PRIVACY RISKS INFLUENCE IR RESEARCH

Privacy issue have significantly influenced the advance of IR research. For years, due
to the lack of mature techniques in privacy-preserving IR, concerns about information
privacy and security have become serious obstacles that prevent valuable user data
from being used in IR research such as studies about the increased information leakage
from text [103, 132], public information exposure on social media and online platforms
[38, 50, 52, 97, 98, 127, 136|, query log anonymization |1, 21, 39, 66, 134, 135|, and

medical research work [17]. The situation needs to be improved promptly.



Consequently, large and real query logs can be found within only a few commercial
companies. Such data dominance might have already impacted negatively on the
research field as a whole. I suspect an increasing split in our community — academic
researchers who have no access to query logs and could not conduct related research
vs. industrial researchers who have the data but miss the opportunities to learn more
diversified ideas from their academic colleagues. I believe that this split could be one
of the reasons that premium IR conferences such as SIGIR (Special Interest Group
on Information Retrieval) are experiencing a decline.? Researchers probably won’t be
able to change the situation in one day. But I hope the issue of privacy in IR could
be alleviated at least from a purely technical point of view. I am therefore highly
motivated to propose query log anonymization methods to enable data release for

research in IR.

1.1.3 EARLIER ATTEMPTS FOR QUERY LOG ANONYMIZATION

Existing work on query log anonymization has attempted to protect the privacy of
search logs in many ways. However, those existing attempts are far from satisfactory.
For instance, Adar [1] and Carpineto et al. [15] used clustering techniques and k-
anonymity, which assumes each query to be issued by at least k different users, to
anonymize query logs. The limitation of a k-anonymity approach is that its privacy
guarantee can be easily broken when an adversary knows information about the users

from an unexpected source. When an adversary knows more about the user than what

http:/ /sigir.org/files/forum/2016J /p001.pdf



Table 1.2: A sample of the anonymized query log from Web Search Click Data work-
shop. (WSCD 2014).

SessionID | SERPID | QueryID | ListOfURLs

34573630 0 10509813 | 34175267 34171511 35444452
15370141 31342884 43630531
26065978 29902424 39016998
62861215
34573635 0 8447254 | 44298735 41815016 62677540
13753389 3336907 67724115
22354391 4606079 37985498
53161116

the k-anonymity algorithm assumes, the adversary could join the unexpected source
with existing ones and break the privacy guarantee.

A few other attempts have also been made to alleviate the lack of available search
log data. For example, in 2014 Yandex shared an anonymized query log (Table 1.2)
for a web search challenge at the Web Search Click Data (WSCD) 2014 workshop to
support document re-ranking.® In this released query log, all words were converted
to hash codes, reducing the utility of the released log significantly. The only web
search task that can be researched with this data set is document re-ranking [11, 85,
95]. Because the contextual data has been removed, the data set is not useful for
any other external IR use. Furthermore, this anonymized query log still suffers from
privacy risks. For instance, if some hash codes are matched to original data according

to frequency distributions, the original search logs from the user may be easily re-

3http://research.microsoft.com/en-us/um/people/nickcr/wscd2014/



identified. A stronger privacy notation is still needed in query log anonymization to
achieve a good balance between privacy and utility.

Recently, differential privacy (DP) has been emerging in query log anonymization.
DP is effective in anonymizing statistical data. It is nice that its privacy guarantee
can be mathematically proved. By adding noise to samples of data in the dataset,
the goal of DP is to create a disturbed (anonymized) dataset that is able to hide
the information of each individual in such a way that no one could tell whether the
individual exists in the dataset or not. The intuitive idea of differential privacy is
that if no one could tell if a user exists in a dataset, it would be even more difficult
to find the user out. It is like what is described in Platform Sutra — if fundamentally
there is not a single thing, where could any dust be attracted? This is perhaps the
strictest way to protect data privacy since the data “seems" to no longer exist. Due to
its strong privacy protection, there is no need for DP to make any assumption about
an adversary’s knowledge or the method an adversary would use to attack the data.
It makes DP feasible in practice to help query log anonymization.

Furthermore, although there exists recent research work on query log anonymiza-
tion, how session data could be properly anonymized and utilized in IR applica-
tions remains an open question. The session data, as a special form of sequential
data in the query log, contains important information about the original web search
retrieval process. It is a helpful complement to the click-through data in query logs.

Without session data, a properly anonymized query log may be used to support



simple IR applications such as ad-hoc search or simple web mining applications such
as website clustering. A properly anonymized query log containing both click-through
data and session data can be used to support more complex IR applications such as
query suggestion and session search. Therefore, I am motivated to research query log

anonymization for both click-through data and session data.

1.2 CHALLENGES

The challenges of query log anonymization rise from privacy guarantee, data utility,
and risk quantifiability.

A major challenge in query log anonymization is to provide a mathematically
proved sufficient privacy guarantee. The AOL incident has shown that the removal
(hashing) of user id is not working at all. A good privacy-preserving query log
anonymization mechanism should provide proved privacy so that any adversary could
not gain much information about the identity of each person whose data appeared
in the log. This challenge is hard to achieve because the potential adversary may use
unexpected external data to analyze or attack our anonymized query log. For instance,
a query frequency distribution may be used to attack an anonymized query frequency
distribution even if the query itself was removed or hashed. Another example is that
the adversary may even get the exact search log of a specific web user from unknown

sources. Then, the user’s identity may be revealed if a piece of our anonymized query
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log matches exactly with the information obtained by the adversary. A strong privacy
mechanism must be used to resolve this challenge.

Another challenge in query log anonymization is to maintain enough IR utility
of the data. It is important since a privacy-preserving technique only makes sense
if enough utility of the data can be maintained. For instance, a trivial privacy-
preserving “technique” that many data owners are currently using is to “release
nothing” to achieve absolute privacy. However, no utility is left after such a “tech-
nique”. Another example is the Yandex example I just mentioned (Table 1.2). While
transforming everything into hash codes, the anonymized query log contains no
textual data with real natural language meaning, which makes the query log almost
useless for other research tasks depending on natural text. An ideal privacy-preserving
technique should maintain enough utility in the output data to support research in
different applications.

Last but not least, the privacy risk of the query log anonymization mechanism
should be quantifiable. In other words, the privacy level of a good privacy-preserving
mechanism should be clearly quantified by privacy parameters. To address privacy
concerns from the public, such quantifiability is the guarantee that a good privacy-
preserving technique can be accepted by the public or any individual user of the
corresponding web service. Practically, when the data owner is preparing for a data

release, the tradeoff between privacy and utility must be considered. Quantifiable
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privacy risk may provide the data owner an opportunity to make better judgments
of the privacy-utility tradeoff.
With all the challenges in mind, I explore the interesting topic of query log

anonymization and propose my solutions to address such challenges.

1.3 SOLUTIONS

In this thesis, I propose to use differential privacy [28, 66| to anonymize a query log.
Differential privacy is the state-of-the-art approach which provides a strong privacy
notion. It has been widely used in the database and data mining communities |71, 93,
106]. Differential privacy provides guarantees which can be theoretically proved that
every individual user in the datasets would not be identified. Unlike k-anonymity,
differential privacy does not make assumptions about the amount and scope of an
adversary’s background knowledge.

Moreover, most existing work in query log anonymization [66] measured the utility
of the anonymization output regarding the size of the remaining logs, without sys-
tematically measuring the utility that is directly related to retrieval performance. It
is thus difficult to tell how much utility is left in the query logs after anonymization
regarding how useful the logs are when we use them to retrieve relevant documents
in a web search algorithm. In this work, I propose the retrieval utility function from
the viewpoint of a search engine to report the actual usefulness of query logs after

anonymized with DP.
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To improve the privacy level of query logs to match the specifications of DP, a
search record might be removed or modified into a set of statistics. However, we need
to be aware that such changes made on the original data only make sense if the
remaining logs can provide enough information to be useful, in our case, to still be
able to support web search.

I propose that we need to keep the web search queries in natural language form
in the anonymized query logs. They are kept in the textual format as they are. Low-
frequency queries are removed since they are too unique and greatly increase the
chance to break the privacy guarantee if they stay. Next, the click-throughs are also
key data in a query log. However, they can only be released in a statistical format
in order to achieve differential privacy. I aggregate all the click-throughs and show
them as summary counts. Furthermore, highly identifiable features such as the user
ids are removed during anonymization. Therefore, they are not shown in the output
log. Moreover, I develop a query log anonymization mechanism to maintain session
data in the anonymized logs. This allows researchers to make use of the anonymized
query logs in more complex research tasks that require session data or query sequence

data.

1.4 TASKS

In this dissertation, I focus on the general task of query log anonymization for single

queries first and then move on to tackle query log anonymization for sessions.
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1.4.1 QUERY LOG ANONYMIZATION FOR SINGLE QUERIES

Compared to databases or structured data, query logs have an infinite vocabulary.
This unstructured, unbounded dataset poses different challenges. To mitigate these
challenges, I propose to use a differential privacy framework to generate anonymized
query logs that contain sufficient contextual information to allow existing web search
and web mining algorithms to use the data and attain meaningful results. I empirically
validate the effectiveness of our framework for generating usable, privacy-preserving
logs for web search and demonstrate that it is possible to maintain high utility for web
search while providing sufficient levels of privacy. Furthermore, in order to examine
how these anonymized logs can be used to support other web mining tasks, I also
show some preliminary results for web document clustering as future work. Following

are the major challenges in query log anonymization for single queries:

What is the best way to anonymize query logs with differential privacy?

e How can we deal with the infinite domain of queries, since a web search query

could be any combination of free text?

e How can we use real IR applications to evaluate the utility of anonymized query

logs?

e How can we get a good balance between privacy and utility?
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Figure 1.2: Ad-hoc web search results by Google on Sep 8th, 2017.

I use the typical IR applications of ad-hoc web search to evaluate the utility of the
anonymized query log in this task. Figure 1.2 presents an example of ad-hoc search

by Google in 2017.

1.4.2 QUERY LOG ANONYMIZATION FOR SESSIONS

In addition to query log anonymization for single queries, I expand the research to
involve session data. Search sessions are special log data that may reveal the intention
hierarchy of users’ online behavior. The session-based query log anonymization algo-

rithm will also release search sessions as additional output. It will be able to support
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complex IR applications that require query sequences. My recent work on session
search have shown that such search sessions are very important resources to support
complex IR tasks and advanced approaches. Although researchers in our community
have recently proposed a few approaches on histogram-based data release of query
logs, how session data in the query log can be released differentially privately with
meaningful utility remains unclear. My research resolves such a major concern about
how to properly release and use the search session information of query logs. I use two
typical IR applications, web search and query suggestions, to examine the privacy-
utility feedback of the session-based differentially private query log anonymization

work. Following are the major challenges in this task:

e How can we keep session information or sequential data in differentially privately

anonymized logs?

e How well can anonymized query logs containing frequent search sessions be used

to support complex IR applications such as query suggestion and session search?

I use query suggestion as the major IR application to evaluate the utility of the
anonymized session log. Query suggestion is a typical task in IR. The general setting
of query suggestion is to predict the following query (or queries) that the user is going
to submit to the search engine, given the previous search log of the user. Figure 1.3
presents common query suggestion examples from Google. In typical search engines

such as Google, the results of query suggestion usually appear in the search box as in
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Figure 1.3: Query suggestion examples by Google on Sep 8th, 2017.

Figure 1.3(a) or at the end of the Search Engine Results Page (SERP) as in Figure
1.3(b).

I use session search as another IR application to evaluate the utility of the
anonymized session log. Session search is a complex search task that makes use of all
queries and user interactions in a search session to improve retrieval effectiveness for
the whole session. Figure 1.4 presents examples of the interactive process of session

search between the web user and the search engine in the Text RetriEval Conference

(TREC) 2012 Session Track dataset [62].
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Figure 1.4: Search Session: The interactive process between the web user and the
search engine. (S85 From the TREC 2012 Session Track)

1.5 OUTLINE

By providing theoretical frameworks and practical implementations of query log
anonymization, this dissertation shows query logs can be anonymized differentially
privately to guarantee privacy, while such query logs anonymized by differential pri-
vacy contain enough utility to support real IR applications as well. In addition, I
present research that can properly anonymize session logs with differential privacy

as well. This thesis research serves as an important step towards a solution to the
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challenge of query log anonymization with the balance of sufficient privacy guarantee
and good utility in typical real-world IR applications.

The remainder of this dissertation thesis is organized as follows: Chapter 2 presents
related work of this dissertation. Chapter 3 addresses the task of query log anonymiza-
tion for single queries. I present my research on query log anonymization and how
well the anonymized query logs can be used to support ad-hoc web search. Chapter 4
presents my research on session log anonymization and how well the anonymized log
can be used to support complex IR tasks such as query suggestion and session search.
Chapter 5 provides the proofs of differential privacy for the algorithms I present in

Chapters 3 and 4. Finally, Chapter 6 concludes the dissertation with discussions.
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CHAPTER 2

RELATED WORK

This chapter presents the related work to this thesis. Chapter 2.1 introduces the basic
ad-hoc search. Chapter 2.2 presents the related work for query suggestion. Chapter
2.3 shows the related work for session search. Chapter 2.4 summarizes the early tech-
niques in privacy-preserving Information Retrieval (IR). Chapter 2.5 introduces the
related work in differential privacy. Chapter 2.6 presents the existing work in query

log anonymization. Chapter 2.7 is the chapter summary.

2.1 AD-HOC SEARCH

Ad-hoc search is a standard web search retrieval task [84]. In an ad-hoc search task,
the user specifies an information need through a single query which initiates a search
for documents which are likely to be relevant to the user’s information need. The
search engine retrieves documents from a corpus with certain retrieval algorithms
and models. Finally, the retrieved objects will usually be evaluated based on their
fulfillment of the user’s information need. Following are some typical classic ad-hoc

retrieval models.
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Statistical modeling in Information Retrieval has largely been confined to solving
static problems; examples include generating estimates for the probability of relevance
using the BM25 formula [88], using Latent Dirichlet Allocation (LDA) to create topic
models [115] or using link analysis to determine PageRank scores [84]. The data is
used in the building and testing of the model and its parameters remain fixed for its
application in a real-world scenario.

In the relevance feedback literature, classic techniques usually include the Rocchio
algorithm [58], pseudo and implicit relevance feedback [12, 99] and its roots in modern
interactive retrieval [90]. These are examples of dynamic IR systems that directly
respond to user behavior. Likewise, we can model dynamic interaction over singular
search queries by re-ranking [23| or optimizing over multiple pages of search rankings
based on implicit and explicit feedback [57].

Since ad-hoc retrieval is the most simple web search process with one single search
query, theoretically, any reasonable ranking (re-ranking) model for a corpus or a
scoring system for the documents could be developed into an ad-hoc retrieval algo-
rithm. As the most classic retrieval task in IR, ad-hoc retrieval is the foundation of
the other retrieval tasks. For example, other IR tasks may involve multiple queries
or social network data, but all of them were developed from this simple process of

ad-hoc retrieval.
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2.2  QUERY SUGGESTION

Query log anonymization for session data is an important part of my research which
I will present in Chapter 4. Therefore, IR applications more complex than ad-hoc
retrieval should be involved to examine the utility of the anonymized session log. I use
query suggestion [45] as the major IR application to examine how the anonymized
session log can be used to support the task. I present the related work for query
suggestion here.

Although under specific settings, query suggestion can be done in the absence of
query logs [8], most query suggestion approaches utilize query logs to suggest queries
[3, 9, 13, 47, 64].

There are two main types of log-based query suggestion approaches. The first type
clusters query based on a click-through bipartite graph. Wen et al. [116] analyzed
query contents and click-through bipartite graphs from the query log. They generate
similarities between two queries from the common documents the users selected for
them and apply a density-based algorithm to form query clusters. Beeferman and
Berger |6] proposed a hierarchical agglomerative clustering algorithm to find query
clusters based on the bipartite graph. Similarly, Baeza-Yates et al. [3] proposed a
method based on query clustering which semantically groups similar queries together.
Feild and Allan [35] proposed a task-aware model for query recommendation using

random walk over a term-query graph from query logs.
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Another type employs query sequences to predict the following queries. For
instance, Boldi et al. [9] utilized the concept of a query-flow graph to generate query
suggestion results. The following queries are suggested according to the likelihood
of query transitions from the previous query in the search session. Cao et al. [13]
proposed an approach using both the click-through data and the session data. Unlike
previous methods, this approach considers not only the last query but also several
recent queries in the same session to provide better suggestions. Song and He [99]
worked on optimal rare query suggestion also using random walk and implicit feed-
back in logs. Song et al. [100] proposed a query suggestion framework considering
user re-query feedbacks from the query transition logs. This work modeled the term-
level query reformulation activities through the query sequence to generate better
suggestion results. Shinde and Joshi [94] gave a survey of various other recent query
suggestion systems.

In summary, the most valuable information from query logs for query suggestion
is the click-through data and query sequences in the search session. Both of them are
available in my anonymized query log in chapter 4. Hence, I will use query suggestion

as the major application to examine the utility of the anonymized log.

2.3 SESSION SEARCH

Session search is another challenging IR task [16, 42, 43, 54, 55, 56, 59, 63, 67, 75,

78, 87, 117| that I use to examine the utility of the anonymized session log.
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Session search has attracted a great amount of research from a variety of views.
Generally, they can be grouped into log-based methods and content-based methods.

There is a large body of work using query logs to study queries and sessions. Wang
et al. [113] utilized a semi-supervised clustering model based on latent structural Sup-
port Vector Machine (SVM) to extract cross-session search tasks. Our state-of-the-
art research work modeled the dynamic process of session search as Markov Decision
Processes (MDP) [43, 124, 130] and Partially Observable Markov Decision Processes
(POMDP) [78, 131]. When a user keeps reformulating queries for a complex infor-
mation need, the entire sequence of queries taken into account and the search results
from queries in the session are aggregated to produce session-wide results. All these
dynamic processes, especially the query sequences and click-through logs, are kept by
the web search query logs. Many other log-based approaches also appear in the Web
Search Click Data (WCSD) workshop series.

Content-based methods directly study the content of the query and the document.
For instance, Raman et al. [87] studied a particular case in session search where
the search topics contain intrinsically diversified tasks, which typically require multi-
session searches on different aspects of an information need. They applied techniques
used in diversity Web search to session search. Content-based session search also
includes most research generated from the recent TREC Session Tracks. Guan et

al. [42] organized phrase structure in queries within a session to improve retrieval

Yhttp:/ /research.microsoft.com /en-us/um,/people /nicker /wscd2014/
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effectiveness. Jiang et al. [56] proposed an adaptive browsing model that handles
novelty in session search. Jiang and He [54] further analyzed the effects of past queries
and click-through information on whole-session search effectiveness.

Others study even more complicated search — search across multiple sessions [67,
75, 113]. Kotov et al. [67] proposed methods for modeling and analyzing users’ search
behaviors that extend over multiple search sessions. Wang et al. [113] targeted the
identification of cross-session (long-term) search tasks by investigating inter-query
dependencies learned from user behaviors.

In summary, existing session search approaches share the common idea of identi-
fying a session-wide information need from past queries in the session. Therefore, the
query logs can be well used to support the task of session search.

I have published Session Search papers in SIGIR’13 [43, 130], TREC’13 [129],

SIGIR’14 [78, 131], ECIR'15 [79] and TOIS [124].

2.4 EARLY PRIVACY-PRESERVING INFORMATION RETRIEVAL TECHNIQUES

In 2006, an outbreak of privacy concerns was triggered when users were re-
identified from a query log released by America Online (AOL) [4]. The AOL log
was “anonymized” by hash coding the ID of each user, and it was soon proved how
poor a mechanism it was. Since then, privacy-enhancing techniques [1, 21, 39, 61]

have been tried on query logs. Early attempts include Log Deletion, Hashing Queries,
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Identifier Deletion, Hashing Identifiers, Scrubbing Query Content, Deleting Infrequent
Queries and Shortening Sessions [21].

The commonality shared by these techniques is that they tried to directly modify
or remove individual data entries. However, there would always be some other traits
left to re-identify the individual. By analogy you may still recognize the identity of
a friend standing in front of you, even if he covered his name tag (hashing identifier)
or wore a mask (scrubbing query content). Regarding these early techniques, now
researchers have reached a consensus that they do not work [1, 39, 61|. Jones et al.
[61] showed that by using a simple classifier, after removing unique terms from the
query log, personal information can still be re-identified with an accuracy as high as
97.5%. Apparently, such naive privacy-preserving techniques are not good enough.

K-Anonymity [15, 105| has been a popular privacy protection technique since
2002. It achieves a certain level of privacy by blending the owner of released records
into a crowd. The main idea is that any released record for an individual cannot be
distinguished from at least k-1 other individuals whose information is also released.
Sweeney [105] provides a detailed discussion about k-anonymity.

The k-anonymity mechanism doesn’t limit the quantity of records each user may
provide, which would result in more raw data being kept in an anonymized log.
However, the privacy of k-anonymity is not strong because it depends on assumptions
made about an adversary [105]. Years later, I-diversity [80] and t-closeness [72] were

also proposed as new privacy mechanisms improved based on k-anonymity.
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In order to develop data protection mechanisms with strong enough proved privacy
guarantee in varying scenarios, our community started to get together and discuss
the future of privacy-preserving IR. In the past few years, we organized the Privacy-
Preserving IR workshops in SIGIR 2014 (PIR 2014 [96]), SIGIR 2015 (PIR 2015 [122]),
and SIGIR 2016 (PIR 2016 [125]). This series of workshops focused on exploring
and understanding the privacy and security risks in information retrieval. Talks and
presentations in the workshop aimed at connecting the disciplines of IR, privacy, and

security.

2.5 DIFFERENTIAL PRIVACY

Differential privacy [33] is the state-of-the-art privacy protection concept [26, 28, 29,
30, 31, 32, 40, 66, 71, 83, 118, 119, 123, 134, 135]. It offers the strongest privacy
guarantee for statistical data release. The key idea of differential privacy is to make
the released statistics affected very limited by adding or removing any single record
or any single user. Whether record level DP or user-level DP is achieved depends on
the neighboring dataset definition. In this thesis, we work on user-level DP.

Recent work [40, 66, 134] has been proposed to use histogram based DP algorithms
for query log anonymization. Gotz et al. [40| and Korolova et al. [66] proposed to
release queries and clicks based on their frequencies. They are one of the first to
release queries as natural language words instead of hash codes. Their work achieved

(€, 9)-differential privacy. They showed that more than 10% of the search volume and
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0.75% of distinct queries from the original log could be privately released. However, in
the existing work, the utility of the released query log was evaluated by the quantity
of queries that could be released and how similar the released statistics are to the
original statistics, instead of how these anonymized query logs could be really used
to support research applications such as IR applications. The research on query log
anonymization has just started and has much more to be complete.

I would also like to briefly mention the use of differential privacy in a few domains
closely related to IR, which includes domains such as Text Mining [37, 120], Data
Mining (DM) [37, 120] and Natural Language Processing (NLP) [14, 20, 37, 70,
93, 120]. Typical such differentially private approaches include differential privacy
in social network analysis [106], histogram publication for dynamic datasets |71], fre-
quent graph pattern mining [93|, privacy-preserving inference from geo-location data
[92, 107], geographic IR [108, 109, 110] or the use of differential privacy in data mining
in general [37, 120]. Tutorials about the use of differential privacy in such related fields
include [22, 46, 76, 81, 91, 126].

Specifically, frequent sequence mining [7, 10, 18, 102, 121] in data mining (DM)
is relevant to our work because it studies how to anonymize sequences of data. Its
techniques can be grouped by types of sequences being released — consecutive subse-
quence mining [10, 18], unconstrained subsequence mining [121], and frequent itemset

mining [102].
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It is worth noting that these frequent sequence mining techniques cannot be
directly applied to query log anonymization. The reason lies deeply in the differ-
ence between IR and DM/ Database(DB). IR handles free text data in natural lan-
guage, which can be considered an infinite domain. On the contrary, DM and DB
handle structured data, which is generated from a limited domain, also called a lim-
ited vocabulary. Even with less than hundreds or thousands of unique items, most
frequent sequence mining approaches would function at a very high cost regarding
computational complexity. If they are applied to an unlimited domain as in IR, where
theoretically any word sequence could be a search query, these algorithms’ computa-

tional costs would be too high to be applicable.

2.6 QUERY LOG ANONYMIZATION

The query log anonymization task came on researchers’ radar in 2006 when a user was
identified from the released AOL search log [4]. For years, researchers have proposed
many ad-hoc techniques to help preserve privacy in query logs. [1] and [39] proposed
anonymizing query logs by removing unique queries and segmenting the search ses-
sions. Jones et al. [60, 61] studied the application of simple classifiers for identifying
gender, age, and location, which can largely reduce the size of user candidates for por-
tions of the query log. They found that the re-identification approach remains very
accurate even after removing unique terms from the query log. These works verified

the need for more robust anonymization techniques for query log anonymization.
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Though with limitations, k-anonymity [1, 15, 48| provides specific privacy guaran-
tees and has been utilized to help in this query log anonymization task. [15] and [48|
proposed methodologies to reduce the large-scale data losses and utility in query log
anonymization. However, the privacy of k-anonymity is based on assumptions about
the background knowledge of the adversary. An approach that does not require such
strict assumptions would be preferred.

Differential privacy [28, 34, 36, 39, 66| is a promising option since it does not
make assumptions about the adversary. Although none of the previous research has
achieved a proven private query log anonymization scheme that can publish the query
log in its original plain format, some have begun investigating differential privacy in
this context. For instance, [66] proposed an algorithm that releases a query-click graph
containing queries, clicked URLs with each query, and the corresponding counts. They
gave an (e,0)-differential privacy approach which maintains some utility. However,
as mentioned in their paper as a limitation, their framework cannot output queries
that were not included in the original query log, which also means that they cannot
achieve e-differential privacy. In this work, we filled this important gap by 1) proposing
a method that preserves more contextual information than previous methods, 2)
proposing a utility function that is specific to the primary task of query logs (web
search) and leads to a more comprehensive evaluation, and 3) achieving e-differential

privacy by incorporating the idea of an external query pool.
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A closely related research topic to query log anonymization is publishing trans-
action or sequence data with differential privacy [19, 68|. Query log can be viewed
as a set-valued or sequence dataset where each user’s record corresponds to a set or
sequence of query terms and URLs (items), and the goal is to publish the count of
query terms or sequences (itemsets). While many algorithms have been proposed in
the literature for frequent itemset mining and frequent sequence mining with DP, a
fundamental difference is that these methods assume a finite domain for the items,
begin with all items in the domain as candidate itemsets and compute their noisy
count. In query logs, there is an infinite possible set of query terms. Hence, the pre-
vious work only achieves the weaker epsilon-delta DP by releasing the noisy count
of a subset of query terms from the query log (as opposed to the entire domain of

possible query terms).

2.7 CHAPTER SUMMARY

This chapter reviews major related work to my dissertation. In the IR utility aspect, I
introduce the major IR applications that are involved in this dissertation including ad-
hoc search, query suggestion, and session search. In the privacy aspect, I go through
the privacy work from the earlier privacy-preserving techniques, differential privacy
to the task of query log anonymization. In the following chapters, I will present my

detailed query log anonymization approaches.
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CHAPTER 3

QUERY LOG ANONYMIZATION FOR SINGLE QUERIES

Query logs can be very useful for advancing web search research. Since these web query
logs contain private, possibly sensitive data, they need to be effectively anonymized
before they can be released for research use. In this chapter, I propose using a differen-
tial privacy framework called Safelog to generate anonymized query logs that contain
sufficient contextual information to allow existing web search algorithms to use the
data and attain meaningful results. I evaluate the effectiveness of my framework for
generating usable, privacy-preserving logs for web search and demonstrate that it is
possible to maintain high utility for this task while guaranteeing sufficient privacy.

This chapter mostly involves contents from my publications [133, 134, 135].

Web query logs have been used to guide the development of new retrieval methods
[2, 27, 78, 131]. While not obvious, anonymization is more difficult for query logs than
for other more structured data sets because query logs are generated from billions
of individual users’ natural language. The associated vocabulary domain for these
queries is, therefore, infinite. This is a sharp contrast to the finite domains of more

traditional data, e.g. itemset mining of a finite domain of items |19, 68].
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In this chapter, I develop a novel e-differential privacy framework called Safelog
that sanitizes and anonymizes a query log. The generated query log maintains utility
for web search and web mining algorithms while maintaining strong privacy guar-
antees. The key to achieving the strong privacy guarantees is the introduction of a
query pool for augmenting the query log during the anonymization process. I explain
and empirically show the privacy guarantee and how to measure the actual retrieval
utility for the task of web search (the primary task that uses query logs). I also con-
sider other web mining tasks that can be supported by these anonymized logs and
show some preliminary results for a clustering task.

To summarize, the main contributions in this chapter are as follows:

(1) Tt is the first to evaluate the utility of differentially private anonymized query
logs on the task of web search. I present Safelog, an effective framework for imple-
menting and evaluating both the privacy and the utility of an anonymized query log.
To better evaluate the effectiveness of the anonymized query log, I propose a new
utility function that is tailored to this task.

(2) I demonstrate how a log anonymization algorithm achieves e-differential pri-
vacy, improving the state of the art in this area from (¢, d)-differential privacy [66].

(3) I present an empirical analysis that highlights the effectiveness of my frame-
work for document retrieval on real world data. I also analyze the privacy-utility
tradeoff so that companies can decide on the level of privacy that is acceptable to

them. Based on both the theoretical and empirical findings, I make practical recom-
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mendations for companies interested in releasing anonymized query logs that include

a detailed discussion of how to set parameters.

3.1 PRELIMINARIES OF DIFFERENTIAL PRIVACY

Table 3.1 uses a toy example to explain how DP works. Suppose we would like to
release a dataset about users’ possession of apples. We would like to release a summary
statistic of the dataset to the public. Would there be any privacy concern when we
release the sum as a statistic? The answer is yes. Suppose we release Dataset 1 or
Dataset 2. Dataset 1 and Dataset 2 are two datasets that differ by exactly one user,
Carol. The summary statistic, the sum of apples, for the two datasets also differs by
what is contributed by Carol (11-9=2). If an adversary happens to know that (a)
Carol has 2 apples and (b) everybody else has either 4 or 5 apples, then it is easy to
identify that Carol is in Dataset 1 and not in Dataset 2. The re-identification can be
done by calculating the possible decomposition for the released sum. For 11 the only
possible decomposition is 54+4+2 and for 9 it is 54+4. Hence, Carol must be included in
Dataset 1 and excluded from Dataset 2. The adversary can thus identify which dataset
Carol is in. If more information about Carol is stored in the dataset, the adversary
could possibly find it out once knowing where Carol is. To obscure an individual’s
identity, DP adds randomized noise to the summary statistic. The anonymized data
then follows a distribution whose mean is equal to the original mean, but the end

results (10) would not be distinguishable between datasets with or without Carol. In
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Table 3.1: Toy example for Differential Privacy. Given only the anonymized data (10
total apples), it is difficult to tell whether the raw data includes Carol (Dataset 1) or
excludes Carol (Dataset 2).

Dataset 1 Dataset 2

Raw Data Alice has 5 apples | Alice has 5 apples
Bob has 4 apples | Bob has 4 apples
Carol has 2 apples
Sum of apples 5+4-+2=11 5+4=9
Anonymized Sum | 11+Noise=10 9+Noise =10

other words, with DP, the adversary would not be able to figure out whether or not
Carol is in a given dataset based on the released anonymized statistics.

Neighboring is a concept upon which differential privacy is defined. Therefore, we
start the definition for differential privacy from defining what neighboring datasets
are.

Definition 1: Neighboring. Two query logs, or more generally two datasets, ()1
and (s, are said to be neighboring to each other if they differ by at most one user.

The toy example we presented in Table 3.1 shows two neighboring datasets. The
only difference between them is information from one person, Carol. When we define
differential privacy later, any possible pairs of neighboring datasets are under consid-
eration. It means the datasets could also differ by Alice or by Bob.

Definition 2: Differential Privacy. A randomized query log anonymization

algorithm A satisfies differential privacy, or more specifically (¢, §)-differential privacy,
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iff. for all neighboring query logs ;1 and (Q,, and for all possible output @', the

following inequality holds:

PriA(Q) = Q'] <e* x PrlA(Q2) =Q'| +9 (3.1)

where A is the randomized anonymization algorithm that takes an original query log
as the input and outputs an anonymized query log (Q'. € and ¢ indicate privacy levels
of A and control the probabilities of getting certain outputs from neighboring inputs.
The ranges of them are 0 < e <ocoand 0 < 4§ < 1.

In Eq. 3.1, smaller values of ¢ and ¢ would lead to stronger privacy guarantee.
Therefore, we usually expect € and d to be much smaller than their upper bounds. In
general, there is no hard rule for selecting values of ¢ and . Proper settings of them
vary depending on actual applications. However, usually we consider an ¢ no more
than 10 and a 0 less than or around (1/#of released users) to be acceptable.

According to Eq. 3.1, the values of € and ¢ directly affect how different two neigh-
boring query logs are after applying the anonymization algorithm A. Therefore it is
necessary to quantitively define the difference between two neighboring input query
logs (01 and ()5. This is the concept of sensitivity:

Definition 3: Sensitivity. Given a function f that takes a query log @ as the
input and a numeric vector as the output, the sensitivity of the function is denoted
as Af:

Af = max 1£(Q1) = F(Q2)]x (3.2)

o V neighboring Q1,Q2
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Figure 3.1: General framework of query log anonymization.

where ||.|]; is the [; norm. The maximum is taken over all pairs of neighboring query
logs 1 and (). In the scenario of query log anonymization, the numeric vector output
of function f(Q) is the vector of raw count statistics generated from query log Q). The
sensitivity value Af shows the maximum overall statistical difference between the

two neighboring inputs )7 and ()2, which largely influence the values of € and ¢.

3.2 PROBLEM FORMULATION

This section presents my formulation of the query log anonymization problem for
single queries. Figure 3.1 presents a general framework of query log anonymization

along with how we evaluate it.
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Query Log Q: Query log () is a textual document that records query data between
the search engine and its users. Usually, it contains a record for each user including
the user’s ID, the query, a ranked list of URLs that the search engine returns to the
user, click-through information, and timestamps for all user actions.

The Task of Query Log Anonymization: Given an input query log (), the
task is to produce a version of the log in which the identifiable data is removed and
the remaining data is adequately anonymized so as to reduce the likelihood of re-
identification of users. The output of this task is an anonymized query log @', with a
guaranteed degree of privacy.

Privacy Function A: An anonymized query log ()’ is generated by applying a
privacy function A on the original query log Q. That is, @' = A(Q). Usually, A is
parameterized to indicate the level of privacy that )’ can achieve. For example, in
differential privacy, € and § is the parameter in A, ie., Q" = A(e,d,Q). Smaller €
and ¢ values indicate higher levels of privacy protection. In the scenario of query
log anonymization, we may also refer to the privacy function A as the query log
anonymization “algorithm” or the query log anonymization “mechanism”.

Utility Function U: In privacy-related research, the remaining utility of the
data after applying a privacy function on it is an indispensable part of the research.
Usually, a utility function U needs to be domain specific to be able to evaluate the
usefulness of the data in a domain. The utility function can be applied on both the

original data U(Q)) and the anonymized data U(Q’) to compare the utility deduction.
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Web Search Using Query Logs: Given a query ¢ and a query log @, the task
of web search is to provide a ranked list of documents or URLs D that is relevant to
q, from a set of documents or URLs that are built into a pre-indexed corpus C'. Most
Web search algorithms fit into this setting. User clicks, query reformulations, time
spent examining the returned documents, and clicked documents on similar queries
shared by multiple users are often the key elements used in a modern Web search
algorithm.

Utility Function for Web Search: In the context of information retrieval, a
utility function U could be a two-step process — the first is to use the query log for
document retrieval, i.e., to retrieve a set of ranked documents D for any g € (), where
D = R(q),q € D and R is a retrieval algorithm. The second is to use IR evaluation
metrics F to measure how good the retrieved document list D is with respect to each
q being evaluated; that is F : F(D). Therefore, the utility function of a query log @
can be represented as U(Q) = E(R(Q)), where E is a retrieval effectiveness measure
for search results generated by R.

Goal: The goal of a successful query log anonymization algorithm is to have

U@ -U@) <o (3.3)

where o is kept small. At the same time, a successful query log anonymization algo-
rithm should ensure that the privacy level € and §: Q' = A(e, 0, Q) are small enough

to provide high privacy guarantee.
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Figure 3.2: Framework overview: My approach.

3.3 ANONYMIZATION ALGORITHM FOR SINGLE QUERIES

Figure 3.2 shows my framework for query log anonymization. The Figure focuses on
a workflow of creating anonymized query logs as well as measuring the logs’ utility in
a complete pipeline for the task of web search. I first partition data using 5-fold cross
validation. In each run, I use 80% of the data as the training set ) and the remaining
as the test set Qres. @ acts as the raw query log from the search engine that is the
input to the query log anonymization algorithm. Q7. is used to evaluate the utility

of my approach on the document retrieval task. Then I transform the query log @) into

Q' = A(Q) in a privacy-preserving way. After that I build a query-click graph, where

nodes are queries and URLs (documents) while edges connect query nodes with their

clicked URL nodes.
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Algorithm 1 Agyi: Query Log Anonymization Algorithm

1:

Input. @: Original query log collected by search engine; ),: Set of external
search queries; 7 :query filtering parameter; ¢y, cs: limiting activity parameters
for number of queries per user and number of clicked urls per user; b, b,, b.: noise
parameters; K: threshold of tail.

Output. @)'.

Qclean = removeSensitiveData(Q), 7)

Qciean = limitUserActivity(Qeiean,qr, cr)

Q" = Qctean + Qp, considering queries from @), as queries with 0 frequency as in
chean-

Qreducea = selectFinalQuerySet(QT,b, K)

Q) = generateLogStats(Qreduced;bg: be, IK)

: return Q'

Algorithm Agyier shows my high-level algorithm for query log anonymization. The

remainder of this subsection describes the main components of the proposed algo-

rithm.

1) The key input of the algorithm includes the original query log (). Other input

of the algorithm includes: the set of external search queries (),, the query filtering

parameter 7, the parameters for max number of queries per user ¢y and max number of

clicked URLs per user ¢y, noise parameters b, by, b., and frequency threshold parameter

K.

2) The output of the algorithm is an anonymized query log @'. The output contains

click-through data as shown in Table 3.2.
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Table 3.2: Anonymized AOL query log: Click-through data.

Query Clicked URL Counts
weather http://www.weather.com 4190
weather http://weather.yahoo.com 1035
aol weather http://weather.aol.com 30

aol weather http://aolsvc.weather.aol.com 16

blue book  http://www.kbb.com 33

blue book  http://www.nadaguides.com 1
hairstyles  http://www.hairfinder.com 5
hairstyles http://www.1001-hairstyles.com 19
hairstyles http://www.hair-styles.org 21

hairstyles http://hairstyles.free-beauty-tips.com 16

3) Preprocessing. As a preprocessing step, step 3 of the algorithm first empirically
remove all queries with a frequency less than 5 from the corpus in order to prevent the
release of unique sensitive data. This step also removes typos. I refer to the output
of this step as Quean.

It is worth noting that step 3 is acting as a “double insurance” of the privacy guar-
antee. In fact, the DP does not require such a preprocessing step. Since there may
be specific privacy concerns on the unique queries with very low frequency, which are
more likely to contain personal sensitive data such as one’s Social Security Number
(SSN), I add this preprocessing step to make sure that unique information will not be
released from the algorithm. In addition to the removal of very low frequency data,
this preprocessing sanitation can be further enhanced by removing data containing
certain named entities from sensitive domains. Practically, I add another prepro-

cessing step to remove all search queries containing email addresses, phone numbers,
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Pattern-1: Someone elses bday w/ mention | {happy|H appy|HAPPY H{birthday|Birthday|BIRTHDAY }QSOMEONE
Pattern-2: Someone elses bday {QSOMEONE]}" + {happy|Happy|HAPPY }

in retweet w/ mention {birthday|Birthday|BIRTHDAY } « {QSOMEONE}™

Pattern-3: Person’s own birthday my birthday is {in]on|e}[TimeEzpression]

Figure 3.3: Sensitive information removal example. Lexicon-syntactic patterns for
BIRTHDAY on Tweets.

and SSN numbers. However, the anonymized query logs are not influenced by this
second preprocessing step since there are 0 occurrences of such sensitive data from
these domains in this AOL dataset. Therefore, I only keep the query frequency based
preprocessing step to make the algorithm neat.

Actually, removing sensitive attribute information from text data is another
research topic. In one of our recent publications (97|, I proposed a pattern-based
attribute detection algorithm to detect information in certain attribute topics such as
birthday or location from a tweet dataset. Figure 3.3 presents some lexicon-syntactic
patterns for birthday attributes on tweets, while Table 3.3 shows the coverage and
precision of such pattern-based extraction on the tweet dataset. Practically, the owner
of the query logs may choose to remove certain information from the query log in its
own way as an extra part of the preprocessing step to reduce the privacy risk even
more. Since this is not the focus of this thesis, I do not go into much detail here.

4) Limiting User Activity. In this step, I reduce each user’s sample in the query
log by limiting the number of queries and URL clicks of each user. Specifically, the

algorithm only keeps the first ¢; queries and the first ¢; URL clicks of each user from
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Table 3.3: Sensitive information removal example. Coverage and precision of pattern-

based extraction on tweet dataset.

Attribute | Pattern Interpretation | # of Posts w Pattern | Precision
Birthday Pattern 1 36 35/36=97%
Birthday Pattern 2 207 84/100=84%
Birthday Pattern 3 36 33/36=92%

Brand Concern/interest in brand 11,095 87/100=87%

Sports team | Interest in sport’s team 572 99/100=99%

Location Visited location 34,296 51/100=51%

(@ and removes the rest. Intuitively, this step allows us to guarantee that the removal
or addition of a single individual in () has a limited effect on the query log. I will give
an experiment later about the values of ¢; and cy.

5) Query Log Expansion. This step is based on an assumption of the use of a
query pool, which I will give a detailed discussion about it later. In order to overcome
the challenge of the infinite domain in query logs, the key idea of step 5 is to use an
external stochastic query pool to augment the query terms already in the query log.
In other words, the query term domain can be viewed as a sampled set of terms S
from the set of all possible query terms in the population P. I will show formally that
using an external stochastic query pool (), to augment the query log with additional
queries improves the overall privacy and allows us to achieve pure DP. I refer to the
expanded set of queries as @, where Q7 = Quean + @p- In the next section, I will

discuss different query pool generation strategies.
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6) Selecting Final Query Set to Release. After that, I select the final set of queries
to release in step 6. Using Lap(b) to represent a random real value drawn inde-
pendently from the Laplace distribution with mean 0 and scale parameter b [33], I
define perturbed counts to be query counts after applying Laplacian noise. I choose to
release a query ¢ when its perturbed query count (M (q, Q")+ Lap(b)) is greater than
a threshold K, where M(q, Q%) is the frequency of query ¢ in Q. Specifically, for
each query ¢ added from the query pool, M (q, Q1) = 0. However, its perturbed query
count (M(q, Q") + Lap(b)) still gets a chance to pass the threshold K and therefore
be included in the output of this step. Theoretically, since every query on Q7 has
a chance of being selected in the final log, the algorithm can achieve e-differential
privacy. The final query set generated after this step is referred to as Qequced-

7) Releasing Click-through Data. As previously mentioned, I release the perturbed
query counts (M(q,Q+) + Lap(b,)) for each query. It is worth noting that for the
perturbed query counts, the algorithm adds noise again using another parameter b, in
step 7. Although b, does not necessarily differ from b, this process reduces the impact
of the cut-off threshold K from the previous step. I also release the perturbed click

counts for each URL: <q, u, #u was clicked when q was posted + Lap(b.)>.

3.3.1 THE ANONYMIZED QUERY LOG

Let K, gy, ¢f, b, by and b, be parameters in my algorithm as defined previously. Let @

be the original query log as input to the algorithm and )q,, be the set of queries from
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(@ that are possible options for release because they occur often enough while keeping
at most ¢y queries and cy clicks from each user. Let (), be an externally generated
stochastic query pool containing a large set of queries. Suppose each possible query ¢
in the infinite domain has a probability of p, € [0,1] to be included in the pool @,. In
practice, the value of p, depends on the source that is used to generate the query pool.
While I provide an approach for generating (),,, major commercial search engines that
have access to a large number of historic queries in their system can create a large
pool @, satisfying a p, value close to 1. Here I state the following theorem:
Theorem 1: The query log anonymization algorithm presented in Algorithm

Acuier satisfies e-differential privacy, where € is defined as:

1/b 1

(&
o =Mart== 14 o )

€ = qy - In(a) + q5/bq + c5/be

I will give the proof in chapter 5.

As T have presented, the query log anonymization algorithm introduced an external
stochastic query pool in order to overcome the challenge of the infinite domain in query
logs. The proper use of such an external query pool is based on an assumption that
the involvement of the query pool will not raise an extra privacy issue. Here I give
interpretations about the solution with such further assumptions in section 3.3.2 and

solution without such further assumptions in section 3.3.3.
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3.3.2 A SOLUTION WITH FURTHER ASSUMPTIONS

Having the assumption that the query pool will not raise an extra privacy issue, I
give the following detail about how we make use of the query pool.

Formally, I define @), as an external query pool generated using an external set
of search queries that are independent of the queries in the original query log Q. @,
serves as a proxy for the full set of queries that exist in the population P. Each query
in ), has an equal probability of being included in the query pool. When a commercial
search engine uses my algorithm, this query pool @), can be generated using a random
sample of all their recorded queries or by using queries from a different period. If the
previous set of recorded queries is insufficient to represent P, query terms can be
randomly extracted from a random set of web pages. Then, I can expand the query
log as Q" = Qeiean + @p- Queries added to QT from @, are queries with a click count
of 0 in the original query log.

Because academic researchers do not have access to an extensive query set like
commercial companies, I must have an approach for simulating the query pool con-
struction process. Therefore, I propose a simulation algorithm that generates a query
pool using artificial queries constructed by randomly sampling and combining high-
frequency n-grams present in the English language. In my experiments, I use the
Corpus of Contemporary American English (COCA)!, which includes approximately

450 million words and 190,000 texts. Using this corpus, Davies [25] published the

Ihttp: //corpus.byu.edu/coca/
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(approximately) 1 million most frequent n-grams each for n=2, 3, 4 and 5. I identified
1,159,938 n-grams from this list that end with a noun since nouns are more likely to
be part of search engine queries. I sample these n-grams to generate the final query
pool ,. In other words, I combine the query terms from two independent samples,
making it difficult for an adversary to know clearly which queries are real and which
ones are not. Using a query pool to maintain log privacy is one of the main contribu-
tions of this work. I will show in my empirical evaluation that even with the addition
of these noisy, external data, I can still maintain reasonable utility for web search

queries.

3.3.3 SOLUTIONS WITHOUT FURTHER ASSUMPTIONS

The use of the query pool I just introduced is based on the assumption that the
query pool itself will not raise other privacy issues. However, if the query pool is sam-
pled from another private collection of search queries, the situation will be different.
Improper use of the query pool may lead to a privacy leak of the private dataset that
the query pool is sampled from. Therefore, the privacy risk of exposing that private
collection of search queries should be carefully analyzed.

In this section, I propose two potential alternate solutions to address the challenge
when such a query pool of all search queries is not publicly available.

Solution 1: Generate a publicly available superset of the query pool with

Natural Language Generation (NLG) [5]. An alternate solution is to replace the
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query pool by its superset generated from a dictionary or a public collection of search
queries. If we generate the query pool from a collection of search queries that are
publicly available, there won’t be new privacy issues from the use of the query pool.
Alternately, if we randomly generate a query pool from a dictionary, although there
will not be privacy issues raised from the query pool, the effectiveness of the query
pool may decrease. According to the sparsity of natural language, we may have to
generate an exponentially increasing amount of term combinations in order to cover
most of the potential queries. In other words, the noise scale may be too large.

Although the exact dataset (query pool @) of all recorded queries from the search
engine may be considered sensitive data by the search engine company, it is still
possible to generate a superset (), of it and make it publicly available. Specifically,
@, is a disordered superset of (), containing both original search queries as well as
artificially generated queries [5]. The major difference between this NLG-based @),
and an artificial query pool purely generated from a dictionary is that @}, is a finite
superset of all recorded queries. Although most commercial search engine companies
are currently hesitating to release their data for different reasons, the release of such
Q; is possible in the near future since it is only a disturbed collection of queries.

By using such an NLG-based superset @), of the query pool @,, my algorithm
Aciier can be implemented in the exact same way. Practically, as a tradeoff of involving

more artificial queries, the privacy level of the algorithm may be reduced with a greater
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€ value. In summary, the challenge may be resolved if any non-trivial supersets of web
search queries become publicly available in the near future.

Solution 2: Map the infinite domain into a finite domain. As I have men-
tioned, a key challenge of query log anonymization as well as sequential anonymiza-
tion in the IR domain is how to address the sparsity of natural language distributions.
Theoretically, any combination of words may generate a legal query, while any combi-
nation of queries may generate a query sequence as a search session. Although there
has been some differentially private work in related fields such as Data Mining [37],
consecutive subsequence mining [10, 18|, unconstrained subsequence mining [121],
and frequent itemset mining [102], they can not be directly implemented in IR since
their high computational complexity is not affordable in the IR scenario with more
than millions of different search queries.

However, a potential solution of using those privacy-preserving Data Mining algo-
rithms in IR may be possible if we can properly map the infinite domain of search
queries into a finite domain. This may be especially helpful to session-based IR tasks
that require sequential information of the search sessions.

To be specific, not all IR applications require raw data of the original search
queries during the search process. For instance, as a toy example, if my IR task is
to research the user patterns of generating “long” queries during a search session, the
exact content of the search queries may not be necessary in this research. Actually,

one binary bit L is enough to provide the required information for a search query: L
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takes 1 when the query is “long”, while it takes 0 when the query is not “long”. Hence,
a search session with 6 queries may be simply represented as (1,0, 1,1,0,0). By simply
adding a limitation that a search session can consider no more than 20 queries, we
can map any search session from a domain space of 00?” into a domain space of 22°.
Practically, many of the mechanisms such as model-based prefix tree mining [10] with
higher computational complexity may became affordable in this domain scale.

Generally, how to map the infinite domain of queries into a finite domain is task
dependent. For instance, a topic classifier may map a search query as one of the
predefined topics, which may be used to support the IR research on topic drifts in
session search [78]. Another example is that a mapping from a search query to a
concept in a knowledge graph or ontology may be used to support multiple tasks in
NLP and IR research. The major advantage of this mapping-based solution is that
many of the existing differentially private Data Mining approaches may be applied
to address IR tasks, which greatly expands the arsenal of methodologies available
to privacy-preserving IR researchers. However, the major limitation of it is that the
anonymized dataset can only be used to support very specific IR applications since
the raw content of queries has been compromised.

In summary, although this solution is not universal to support all IR applications,
it is still meaningful when the IR application only requires certain information in a
finite domain. I hope this can inspire more follow up work on this path of privacy-

preserving Information Retrieval.
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3.4 UTILITY MEASUREMENT WITH AD-HOC SEARCH

I measure the utility of the anonymized logs by using them to help the task of ad-hoc
retrieval in web search.

Retrieving Documents. We retrieve documents using three different algorithms
[2, 24, 111] for queries in Qres in order to evaluate the utility of the released query
log Q'.

The first retrieval algorithm is based on a random walk on the query-click graph.
In the graph, nodes are queries and documents (URLs), while the transition weights
between nodes are defined by their relationship in the released data. The most
common transition type links a query node to a document node. Another type of
transition we consider is between two query nodes in the query-click graph. Each
query node also has a transition weight to itself as a self-loop. I calculate the tran-
sition probability P(k|j) from a query node j to document node or another query
node k in a slightly different way from a popular random walk click model proposed
by Craswell and Szummer [24]. Then, I rank the URLs according to the descending
order of the probabilities of staying at corresponding URL nodes. P(k|7) is calculated

by:

(1 - S)Cjk/ZZCﬂ ,Vk’ 7éj

S k=7
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where Cy, is the weight between nodes j and k given by @', and s is the self-transition
probability. If both nodes j and k are query nodes, weight Cj;, is defined as the query
transition counts from j to k as specified in @)’; otherwise, if j is a query node while k
is a document node, weight C}, is defined as the click-through counts for this query-
document pair as specified in )'. In this approach, I empirically set the self-loop
probability s = 0.1. After that, I can rank documents in descending order by the
probability of being the stopping node.

The second algorithm uses the impact factor of each web page to enhance the
random walk model. Tt is based on [111]. In this setting, more popular websites gain
greater probabilities for the random walker to walk into. An impact factor F' for each
web page is introduced to the above random walk model, resulting in greater probabil-
ities for the walker to walk into nodes with greater F' values. In the implementation,
I define the impact factor F; of a web page (document node i) as a smoothed sum of

its click counts as

where Cj; is the weight between node j and i given by @', and the impact factors
for the other query nodes are set to be a constant 1. The new transition probability

P'(k|j) from node j to node k can be calculated by

Fy
> F

o7+
ZEL]-

P'(k|j) = Normalized( x P(k|7)) (3.7)
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, where L7 is the set of outbound links of node j and P(k|j) and F are calculated as
earlier.

Besides using query graphs for document retrieval, we can also consider using
user clicks as feedback. This additional query log data is useful for some web search
algorithms. The third algorithm is a modified version of the implicit feedback model
proposed in [2]. It merges the original rankings with the implicit feedback, in this
case the user clicks. Previous literature has proposed methods that incorporate user
behavior data to help to improve the order of retrieved documents. In this work, I
implement a variant of [2].

Given a query ¢, the relevance score S(d) for each document d is calculated as:

A+ (1= Ngogg,  if implicit feedback exists for document d
S(d) = (3.8)
ﬁ, otherwise

where O, represents the original rank of document d, I; represents the implicit feed-
back rank in Qs, and A\ is a parameter to weigh the importance of the implicit
feedback. In this approach, the original rank O, is ranked by the order of click-
through counts of document d for query ¢, according to @)'. I is the rank of d from
Q7est when the user makes a click. I empirically set A = 0.6. Finally, the documents
are ranked in the descending order of S(d) scores for each query ¢. In addition, I
generate a ground truth set of documents based on the actual clicking information in
Q1est to evaluate the document retrieval results obtained from the previous step. For
each tested query in Qr.s, the corresponding ground truth contains a set of relevant
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documents (URLSs), where relevant means that they have been clicked on in Qres.
Actual search engines may choose to replace my approach in this step since they have
more detailed data about users’ online activity (for instance, the dwell time on each
returned page) than I do.

Calculating Retrieval Effectiveness. I compare my retrieval results to the ground
truth and evaluate the retrieval effectiveness using multiple IR metrics, including
nDCG (normalized discounted cumulated gain) [53], MAP (Mean Average Precision)
[89], Precision, and Recall. Among them, nDCG at rank position 10 (nDCG@10) is the
most widely used IR evaluation metric for web search in both commercial companies
and academia. It measures the retrieval effectiveness for a ranked list of retrieved
documents in the first ten results, which form a SERP that a searcher cares most
about. I also use nDCG@10 as the predominant evaluation metric. For each query ¢

in a query log @, I can calculate its nDCG@Q10 as:

10 ' NRet
nDCGa10(g, D) = {; log;(jl;l)}/{; zogzéu)} (3.9)

where D is the ranked list of documents retrieved for query ¢ by ranking algorithm
R such that D = R(q). rel; is 1 when the i'* retrieved document d; € D is relevant.
Otherwise, it is 0. Vg, is the smaller value of the total number of relevant documents

for ¢ and 10.

95



This work is the first to evaluate the utility of a query log using actual IR evalu-

ation metrics. The total utility function U(Q) for a query log @ is:

1

U(Q):@

Y nDCG@10(q, D) (3.10)
qeQ

Note that not all queries in Q7¢s; can be found in the anonymized query log @'
Most of the added queries in ) from the query pool may not be included in Q7
either. Therefore, when this utility function is used on the anonymized query log @’
to test on retrieval on Qres, only those queries in the intersection of Q7. and

can be evaluated.

Table 3.4: Statistics of the AOL query log.

Statistics Counts
Total number of records 36,389,567
Log size (GB) 2.2
# of unique user IDs 657,426
# of unique queries 10,154,742
# of clicks 19,442,629
Avg. clicks per user 29.57

3.5 EXPERIMENTS

In this section, I evaluate the privacy-utility tradeoff of the query log anonymization
algorithm based on the AOL query log dataset. I use retrieval effectiveness for web
search to evaluate the utility of anonymized query logs. This section presents my

empirical results and analysis.
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3.5.1 EXPERIMENTAL SETUP

I use the released AOL query log dataset [1] in my experiments. The dataset is a query
log containing 36,389,567 search records. Table 3.4 presents some more statistics of
the AOL query log dataset. At this stage, the AOL query log is the only available
query log for privacy-related research like ours. Table 1.1 gives a sample of the original
AOL query log.

As detailed in the previous section, I first partition the input query log into a
training set () and a test set QQr.s. Then I use my query log anonymization algorithm
to generate the anonymized query log ('. After that, I use the presented document
retrieval algorithms to retrieve documents for queries in Q... Finally, the utilities are
calculated by comparing search results against the ground truth. During parameter
tuning of the query log anonymization algorithm, I ran different combinations of the
major parameters, including K, b, q¢, and cy. To better control and compare the
major parameters, I set constant values for some other parameters such as b. and b,.

In the following section, I present my detailed experiments. Firstly, I evaluate the
utility by retrieval effectiveness to verify that the anonymized query log can be as
useful as the original query log. Then, I design and implement experiments to inves-
tigate the impact of major parameters K, b, ¢y and ¢y on privacy and utility. Fur-
thermore, I implement experiments to research the privacy-utility trade-off. Finally,
I give overall analysis and generate more experiments to give my recommendations

of parameter selection during the query log anonymization process.
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3.5.2 UTILITY BY RETRIEVAL EFFECTIVENESS

First of all, we need to show that the anonymized query log is useful. Specifically, I
implement this experiment to illustrate that the utility of the anonymized query log
@' can be comparable to the utility of the original query log ) according to their
retrieval effectiveness. I use multiple retrieval algorithms to do document retrieval
based on @) and @' and compare their utility scores. Figure 4.3 shows the utility across
different retrieval evaluation metrics including nDCG@10 and MAP (Mean Average
Precision). For each of the three algorithms I presented in the previous section, I

run them on both the original log and an anonymized log with the following privacy
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Figure 3.4: Utility by retrieval effectiveness.

settings: € = 29.99, query frequency threshold K = 500, and noise scale b = 10.
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Table 3.5: Utility by retrieval effectiveness with random walk. Two-tailed t-tests (p <
0.01) show no significant difference of utility scores before and after anonymization.

Query Log | nDCG@10 | P@5 | P@Q10 | MAP
Original 0.6658 0.1484 | 0.0779 | 0.6395
Anonymized 0.6675 0.1486 | 0.0777 | 0.6424

Table 3.6: Utility by retrieval effectiveness with implicit feedback. Two-tailed t-tests
(p < 0.01) show no significant difference of utility scores before and after anonymiza-
tion.

Query Log | nDCG@10 | P@5 | P@l10 | MAP
Original 0.6919 0.1535 | 0.0796 | 0.6725
Anonymized 0.6897 0.1527 | 0.0790 | 0.6711

Results in Figure 4.3 indicate that my anonymized query log can produce com-
parable query effectiveness results to those of the un-anonymized version. Table 3.5
and Table 3.6 present more detailed utility results for the random walk run and the
implicit feedback run. Two-tailed t-tests (p < 0.01) show that there is no significant
difference of utility scores before and after anonymization. In other words, under cer-
tain circumstances, ) can perform as well as the original non-private query log. This
occurs when the noise scale b is much smaller than the query count threshold K. This
means that the statistics in the released query logs are not influenced significantly by
the added noise. These results confirm the utility level of the anonymized log gen-
erated by my framework can be comparable to the utility level of the original log,

which is the foundation of further experiments.
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Table 3.7: -DP and (e,0)-DP achieve similar utility scores with different privacy
guarantees.

Anonymization Algorithm | e ) nDCG@10 | MAP
e-DP 1.40 | 0.0000 0.5239 0.5127

(€,0)-DP [66] 1.20 | 0.0001 0.5259 0.5146

e-DP 1.00 | 0.0000 0.5217 0.5105

(€,0)-DP [66] 0.86 | 0.0011 0.5241 0.5130

e-DP 0.70 | 0.0000 0.5234 0.5123

(€,0)-DP [66] 0.60 | 0.0082 0.5212 0.5102

In addition, I also reimplement the (¢, §)-differentially private query log anonymiza-
tion algorithm from [66] in order to examine whether my utility evaluation method-
ology by retrieval effectiveness can be used to support other baseline query log
anonymization. Practically, I use the same major parameters (noise scales b and
cut-off threshold K') in my e-differentially private anonymization algorithm and the
(€, 0)-differentially private anonymization algorithm. Table 3.7 shows that the e-DP
and (e,9)-DP achieve similar utility scores with different privacy guarantees, while
using my utility evaluation system based on retrieval effectiveness. The data releaser
may choose to apply e-DP or (¢,6)-DP according to the detailed privacy guarantee

that is expected.

3.5.3 IMPACT OF K AND b ON PRIVACY AND UTILITY

In this section, I describe experiments that investigate the impact of the frequency

cut-off threshold K and the noise scale parameter b on privacy and utility. Specifically,
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I adjust different parameter settings to see when the privacy and utility values change
significantly.

Figure 3.5 shows the impact of K and b on utility score nDCG@10. The results
are based on document retrieval evaluation using ()’ with varying K and b values
while fixing other parameters. Among the three retrieval algorithms used, two of
them are based on random walk models and are similar to each other. In this part, I
focus on results based on the regular random walk algorithm and the implicit feedback
algorithm. Each subgraph shows experiments using a different K value with K ranging
from 10 to 500. Each data point on the subgraph represents the average of a set of 5-
fold cross-validation results from the two retrieval algorithms (Implicit Feedback and
Random Walk algorithm). Within each subgraph, all the data points share the same
qr, ¢y and K values. They also use the same )’ size. Therefore, the results within
each subgraph highlight the effect of different values of b. In general, as b increases,
the utility nDCG@Q10 decreases. This matches intuition since I expect larger noise
scales to reduce retrieval performance and cause decreased utility.

Figure 3.6 presents the impact of K and b on privacy. It shows the e values for 25
different released query logs with varying K and b values while other parameters are
fixed. They are organized in 5 subgraphs that show the b-e relationships, each with
different K values. In each subgraph, I label each point with the evaluated utility score
(nDCGQ10 from the implicit feedback algorithm). The figures show that the e value

is not always monotonically related to b. In graphs 3.6(c) and 3.6(d), I can observe

61



={J= Implicit Feedback
===+ Random Walk

T L L LN A
I | I | I | I

0

bl L L LB

1000

o 9 9 «
| REEE RARS LA RERE RER

—O— Implicit Feedback™s.
T+ O -+ Random Walk

e | L

T T

ool

P -

100
b

(c) K=100

1000

={J= Implicit Feedback
==+ Random Walk

'O--.._'_
bk L L L IIIJJ] ' ' ekl
10 100 1000
b
(b) K=50
_—EI— Implicit Feedback
F=-{+= Random Walk
.-I.JI.II. L L lIIIJJ] L Ll L LLLl
10 100 1000
b
(d) K=500

Figure 3.5: Impact of K and b on utility score nDC'G@10.

turning points with minimum e values. These data points represent the smallest € value
I can achieve, i.e. the strongest privacy. I also notice that the utility at these points
remains high. As b increases after the turning point, the performance decreases both

regarding privacy (greater €) and utility (smaller nDCG@10). Such turning points




can be mathematically calculated from Equation 5.1. I get such turning points when

el/b 1

- =14+

> ST (3.11)

Actually, I recommend that the data releaser use the parameter combinations at those
turning points since they are taking minimal e values (strong privacy) and good utility
values (before dropping significantly according to figure 3.5).

An additional observation is that the utility score is less sensitive to the noise
scale b when b is much smaller than K. Finally, I can see that the implicit feedback
algorithm performs better than the random walk algorithm, but they share similar
patterns of retrieval performance as b changes. Note, because different values of K

lead to different sizes of data, comparing across subgraphs does not make sense.
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Figure 3.6: Impact of K and b on privacy level e. The data points are marked with
their corresponding nDC'G@10 scores using the Implicit Feedback algorithm.

3.5.4

IMPACT OF gy AND ¢y ON PRIVACY AND UTILITY

Another set of experiments revealing the privacy-utility trade-off is necessary to inves-

tigate the performance differences caused by ¢ (query limitations from each user in

@) and ¢ (clicking limitations from each user in Q). It is worth noting from Equation
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Figure 3.7: The tradeoff between privacy (e value) and utility (nDCG@10).

5.1 that € is very sensitive to ¢y and ¢y because the sensitivity of the algorithm is

Af = Maz(qy,cy) (3.12)

while the € value is linearly related to Af. Since ¢; and c; have obvious influence on
the value of €, we can observe the direct privacy-utility trade-off in this experiment.
Figure 3.7 presents the relationship between privacy (e value) and utility (nDCG@10
value). All runs are evaluated on the same test set. This experiment takes fixed values
for K = 10 and b = 10 while leaving € changes according to varying ¢ and cy values.
In this experiment, there are no limitations to the scale of the query log @), which
is the case in real data release processes. On one hand, greater values of ¢y and c¢;

make use of the larger scale of input data which may increase the data accuracy
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Table 3.8: General relationship between ¢¢,cy and €, when K = 10 and b = 10.

gg=c;| 1 2 4 6 8 10 20 40 80
e |043 085 1.71 256 342 427 854 17.08 3416

Table 3.9: Detailed results for the tradeoff between Privacy (e value) and Utility
(nDCG@10).

cr | e IF | RW | RW-2
0.43 | 0.5872 | 0.5871 | 0.5884
0.85 | 0.6298 | 0.6270 | 0.6305
1.71 | 0.6535 | 0.6464 | 0.6539
2.56 | 0.6602 | 0.6545 | 0.6602
3.42 | 0.6638 | 0.6566 | 0.6635
4.27 | 0.6667 | 0.6587 | 0.6663

af

S 00 o o=

and retrieval utility. On the other hand, greater values of ¢y and ¢y naturally lead to
greater value of €, which weakens the privacy.

According to the results based on all three retrieval algorithms, we do observe
the obvious privacy-utility trade-off from the positive correlation between nDCG@10
and €, while a smaller € value means stronger privacy. Table 3.9 presents the detailed
results of this experiment. If the data releaser prefers stronger privacy with smaller
e value, the retrieval utility (nDCG@10) may drop significantly from 0.6663 (when
e = 4.27) to 0.5884 (when ¢ = 0.43, taking only one research record from each
individual). Alternatively, if the data releaser prefers better retrieval utility, the data
limitations ¢; and c¢; should be relaxed in order to include more raw data from the

original dataset, which hurts some privacy by having a greater value of €. I recommend
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Figure 3.8: Parameter recommendations for noise b, query cutoff K and their rela-
tionship with utility score nDCG@10.

that the data releaser carefully consider this trade-off between privacy and utility in

order to do the most appropriate query log anonymization.

3.5.5 OVERALL ANALYSIS AND PARAMETER RECOMMENDATIONS

In this part, I analyze the privacy parameters and give recommendations to query log
owners who want to use my framework to release and evaluate query logs.

Figure 3.8 provides an intuitive presentation by plotting the trends between the
utility scores and the parameter values in a 3-D graph. In this graph, I observe that
as the noise level b increases, the utility scores nDCG@Q10 decreases. I also observe

that the utility score is less sensitive to b when b is much smaller than K.
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This observation matches the intuition that larger noise (compared with K) will
reduce retrieval performance and cause decreased utility. Hence, I recommend using
smaller b values (around b = 10) when K values are small (e.g., K = 10, 30, or 50).
As K gets larger (e.g., K = 100 or 500), it is better to set b to be the same scale as
K and close to the turning point. These settings should achieve the best combination
of privacy and utility.

Table 3.10 shows the optimal parameter combinations for query log anonymization
given fixed privacy budget ¢ = 0.5,1.0,2.0 and 4.0. The utility scores are all from
the RW-2 retrieval algorithm. The parameter calculations are based on Theorem 1
in Chapter 3 and the “turning points” as I discussed in section 3.5.3. By using such
combinations of parameters, we can make the best use of the privacy budget to pursue
better utility. According to the results, while fixing the € value, maximal utility values
may be achieved when taking relatively small combinations of the parameters (bold
font in Table 3.10). The utility appears to decrease when the parameter combinations
shift away from the optimal combinations. Under certain fixed e values, I recommend
using those parameter combinations with optimal utility values. In addition, when
we compare such bold font runs with different ¢ values, it is easy to observe that
runs with smaller € values (stronger privacy) may achieve lower utility values (worse
utility), while runs with larger e values (weaker privacy) may achieve higher utility

values (better utility). That is a direct trade-off between privacy and utility.
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Table 3.10: Optimal parameter combinations for query log anonymization given fixed
privacy value e.

€ | qf =cy b K Utility
0.5 1 6.0 8.08 | 0.6114
0.5 2 14.0 | 28.74 | 0.5757
0.5 3 22.0 | 54.25 | 0.5475
0.5 4 30.0 | 82.74 | 0.5253
0.5 5 38.0 | 113.39 | 0.5090
1.0 1 3.0 270 | 0.6359
1.0 2 7.0 | 10.26 | 0.6391
1.0 3 11.0 | 20.25 | 0.6335
1.0 4 15.0 | 31.72 | 0.6245
1.0 5 19.0 | 44.27 | 0.6131
1.0 6 23.0 | 57.67 | 0.6051
1.0 7 27.0 | 7177 | 0.5949
1.0 8 31.0 | 86.46 | 0.5863
1.0 9 35.0 | 101.68 | 0.5766
1.0 20 75.0 | 273.33 | 0.5260
2.0 2 3.5 3.45 | 0.6534
2.0 4 7.5 | 11.41 | 0.6575
2.0 6 11.5 | 21.61 | 0.6555
2.0 8 15.5 | 33.24 | 0.6541
2.0 10 19.5 | 45.90 | 0.6500
2.0 12 23.5 | 59.40 | 0.6446
2.0 14 275 | 73.58 | 0.6400
2.0 16 315 | 88.34 | 0.6345
2.0 18 35.5 | 103.61 | 0.6281
2.0 20 39.5 | 119.33 | 0.6213
4.0 5 4.75 5.60 | 0.6651
4.0 10 9.75 | 16.94 | 0.6660
4.0 15 14.75 | 30.97 | 0.6651
4.0 20 19.75 | 46.73 | 0.6635
4.0 25 24.75 | 63.76 | 0.6612

In summary, by carefully analyzing the expectation for privacy and utility, the
data releaser could find proper combinations of the detailed parameters in the query
log anonymization process according to the insights of these experiments. A good

balance between privacy and utility in query log anonymization can be found.
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3.6 CHAPTER SUMMARY

In this chapter, I introduce a framework for anonymizing and evaluating the utility
and privacy of the anonymized log. To the best of my knowledge, this work is the first
to generate anonymized query logs that have been measured for utility on actual web
search tasks. The framework provides effective query log anonymization algorithms
that place adequate privacy guards on those logs while simultaneously maintaining
high retrieval utility. The experiments demonstrate that the proposed framework
is very effective — a statistical significance test (two-tailed t-test, p < 0.01) shows
that popular web search algorithms using the anonymized logs perform comparably
with those using logs before anonymization. In addition, my comparative experiments
illustrate the privacy-utility trade-off in query log release. In particular, the stricter the
privacy standard required, the lower the utility or usefulness of the released query log
regarding web search. The work presented in this chapter shows that the differentially
private query log is able to well support typical web search tasks. I hope that it

encourages web search engine companies to release logs for research purposes.
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CHAPTER 4

QUERY LOG ANONYMIZATION FOR SESSIONS

In chapter 3, I have shown that the web search query logs can be properly anonymized
with differential privacy in order to support typical web search research. It is like
single record privacy protection [135] in the context of query log anonymization. In
such a basic form, each web search query and its associated user actions are treated as
one block for anonymization; each block is independent from each other. It might be
sufficient to support ad-hoc retrieval that handles queries independently but will be
not adequate for more complex IR tasks that require knowledge of query sequences.

In this chapter, I continue my research to support more complex IR applications.
Query session data, as a special form of sequential data in IR, contains important
information about the original web search retrieval process. It is a helpful complement
to the click-through data in query logs. A properly anonymized query log containing
both click-through data and session data can be used for many other IR applications
such as query suggestion and session search. The challenge of how to anonymize
session logs in order to support complex IR tasks remains.

In this chapter, we tackle this challenge by keeping session information in differen-

tially privately anonymized logs so that an anonymized log can support IR tasks that
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need query sequence information. In particular, I demonstrate how anonymized query
logs can be used for the tasks of query suggestion and session search. I also provide
analysis of how to achieve a proper balance between privacy and search utility.

This chapter involves contents from my publication [128].

4.1 BACKGROUND

This research work of query log anonymization for session data is an important exten-
sion of the query log anonymization research I presented in chapter 3. As I have
introduced earlier, recent research has made progress in the task of applying Differ-
ential Privacy in query log anonymization [40, 66, 135]. However, there are two main
limitations of the current approaches.

First, the utility of anonymized query logs should be properly measured and should
be task-based. Most existing approaches simply measure the utility of anonymized logs
by the percentage of what is remaining instead of evaluating through actual IR tasks
and IR effectiveness measures [66]. However, utility should be task dependent. We
argue that we should use the latter. In this study, I find that percentage of the kept
data and real IR utility is different, and sometimes they could even contradict each
other.

Second and more importantly, sequential data and search session data was not
involved in the existing query log anonymization research. Existing work only takes

care of single record privacy protection [135|. This simplification is not sufficient for
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Table 4.1: Search session examples from TREC 2012 session track.

session 6

1.pocono mountains pennsylvania

2.pocono mountains pennsylvania hotels
3.pocono mountains pennsylvania things to do
4.pocono mountains pennsylvania hotels
5.pocono mountains camelbeach

6.pocono mountains camelbeach hotel
7.pocono mountains chateau resort

8.pocono mountains chateau resort attractions
9.pocono mountains chateau resort getting to
10.chateau resort getting to

11.pocono mountains chateau resort directions
session 28

1.france world cup 98 reaction stock market
2.france world cup 98 reaction

3.france world cup 98

session 32

1.bollywood legislation

2.bollywood law

session 37

1.Merck lobbists

2.Merck lobbying US policy
session 85

1.glass blowing

2.glass blowing science
3.scientific glass blowing

complex IR tasks that require the use of sessions, a particular form of sequential data,
from a query log.

Table 4.1 shows search session examples from the TREC 2012 Session track [62,
63]. In each session, the user keeps modifying the queries several times until the

retrieved result satisfies its information need or leads to the frustration of the user.
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From Table 4.1, we can observe how queries change constantly in a session, which is
an important part of information in the query log. For instance, the patterns of query
changes include general to specific (pocono mountains — pocono mountains park),
specific to general (france world cup 98 reaction — france world cup 98), drifting
from one to another (pocono mountains park — pocono mountains shopping), or
slightly different expressions for the same information need (glass blowing science
— scientific glass blowing). These changes vary and sometimes even look random
(gun homicides australia — martin bryant port arthur massacre), which increases the
difficulty of understanding user intention. However, since query changes are made after
the user examines search results, we believe that such query change is an important
form of feedback. We hence propose to study and utilize query changes to facilitate
better session search. My previous work on session search have shown that such
query change information hidden in the session data can be well used to support
session search [43, 130|. Figure 4.1 presents the interactive process between the user
and the search engine during a search session. Such a dynamic process can only be
utilized if the anonymized query log contains the session data. In fact, session data
in the query log can be used in a variety of IR applications such as query suggestion,
dynamic search and session search. Furthermore, such query sequence data can also be
beneficial to research in data mining, NLP, user study and other data-driven research
involving natural language corpora. In summary, the session log data could be much

better distributed and used by our IR community if we can come out with a proper
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Figure 4.1: Search session example: the user modifies queries in the interactive process.

mechanism to anonymize session log. This is my major motivation to do session log
anonymization.

A major challenge of session log anonymization is the sparsity of re-occurring
sessions. The sparsity comes from the large number of possible query sequences. From
the perspective of privacy research, the sparsity of sessions would require a greater
scale of noise to be added and would make privacy protection harder to keep under
control. From the perspective of IR utility, the sparsity of sessions also makes it more
complicated to distinguish higher frequency sessions, which may be more valuable to
support IR applications, from the other sessions.

In this research, I am developing query log anonymization algorithms that can

release sequential queries as search sessions after anonymization [128|. Then, I use the
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anonymized query log containing session data to support the typical IR application
of query suggestion which depends on query sequences in a search session. To the
best of our knowledge, this work is the first to study how session data can be released
anonymously and be useful to support complex IR tasks.

To be specific, this research aims to anonymize a query log with (e, §)-differential
privacy and release a differential privacy protected query log consisting of click-
through data as well as session data. I will show that the anonymized query log
can be used to support complex IR applications such as query suggestion and session
search and report the remaining IR utility of the anonymized log.

In summary, I mostly study the following research questions in this chapter:

(1)How can a query log containing session data be released by differential privacy?

(2)How well can anonymized query logs containing frequent search sessions be

used to support query suggestion?

4.2 ANONYMIZATION ALGORITHM FOR SESSIONS

I develop a new query log anonymization algorithm Ag.ssion that would release two
parts of data as output. The first part contains query sequences in sessions. The
second part contains the frequent query click-through data. Accordingly, my session
log anonymization algorithm consists of two parts. Both parts of the algorithm take
the original query log () as input, and the mechanisms should satisfy differential

privacy. Part 1 of Ag.ssion releases frequent search sessions as output, while part 2

76



of Agession Teleases frequent query click-through data as output. The major challenge
falls in how to design the session data release part.

Because of the property of natural language, the total number of unique search
queries could be infinite. Exact matches of search sessions are thus rare because
sessions are ordered sequences of those natural language queries. As we know that
low frequency data would always be difficult to protect by anonymization algorithms.
This poses a challenge to session-based query log anonymization. To address this chal-
lenge, the following are potential solutions to develop the session log anonymization

algorithm:

e A straightforward solution may be to consider each search session as an indi-
vidual record in the raw data and apply a differentially private mechanism to
filter the records. However, the major issue of this approach is that the output
scale may be largely limited according to the low frequency of each individual

distinct search session.

e A potential solution is to consider all non-trivial subsequences of a query
sequence in the raw data as individual records of search session. The idea for
this approach is to reduce the sparsity of session distribution so that the search
sessions could get more occurrence frequency, which may make the session

anonymization algorithm achieve better balance between privacy and utility.

e [ may also be able to develop session log anonymization mechanisms based on

the frequent sequence mining approaches. However, query log anonymization
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works on an infinite domain of attribute value (search queries), which is dif-
ferent from the frequent sequence mining scenario in data mining where the
attribute value range usually has a much smaller size. It will be my future
research work to investigate which may be the most proper way to do the ses-

sion log anonymization task.

4.2.1  Agession: QUERY LOG ANONYMIZATION ALGORITHM FOR SESSIONS

Our query log anonymization algorithm releases two types of data: query sequences in
sessions and click-throughs. The anonymization algorithm also consists of two parts
to produce the two types of data. Both parts take the original query log @) as the input
and satisfy the (e, d)-differential privacy. Part 1 of Agession releases frequent search
sessions as the output, while part 2 of Ag.ssion releases frequent query click-through

data as the output. We merge their outputs and release both in algorithm Agession-

4.2.1.1 PART 1 OF Agession: RELEASING SESSION DATA

Because of the property of nature of natural language, the total number of unique
search queries could be infinite. Exact match of the two search sessions is thus rare
because sessions are ordered sequences of natural language queries. As we know, it
is difficult to protect low frequency data from being re-identified. To address this
challenge, we propose to increase the session and query counts by adding all non-

trivial subsequences of sessions as individual sessions in the query log.
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We propose part 1 of the Agegssion algorithm to release search sessions with (e, d)-
differential privacy. Each non-trivial subsequence of the original sessions would con-
tribute a count to reduce the sparsity of sessions. We add noise to the session frequency
by applying the Laplace mechanism [40, 66].

Part 1 of the algorithm Ag.ssion takes in the following inputs: the original query
log @, the session timeout threshold T, the max number of sessions per user [, , the
max number of queries per session [,, Laplace noise scale b, and the session frequency
cut-off threshold K. The algorithm is described as the following:

1) Session segmentation. We define each session S as an ordered sequence of search

queries:

S = [q17QQ7"'7Q|S|] (41)

where |S| is the number of queries in S.

We segment the sessions in @) based on either i) if they are from two different
users, or ii) if the timestamp difference between these two queries is greater than
the session timeout threshold Tg,,. Practically, we take 30 minutes as the timeout
threshold according to previous work in session search [43]. Then we transfer () into

Qseg, Which is a set of sessions:

Qseg — {Sl, SQ, ey S|Qseg|} (42)

Without loss of generality, we only keep non-trivial sessions that consist of at least

two queries. “Sessions” with only a single query are excluded from Q.
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2) Subsequence mining. To increase the number of repeated sessions, we take into
consideration all non-trivial subsequences within a session and treat them as sessions
too. The relative orders from the original session are maintained with the permission
to have some original queries missing in the new subsequences. That is to say, each
subsequence of a session S = [q1, ¢z, ..., q5)] is a sequence 5" = [q1, ...q"S,l] defined by

, - . : .
q; = Qn,, Where the indices n; < my < ... < njg/ are monotonically increasing and

|S’| >= 2. For example, if the original session is (¢, g2, g3, q4), our algorithm adds one

count to each of the following 11 sessions:

(1,425 43, 1)s (@1, 42+ G3), (q1, G2, 4a), (415 G3, G4 ) (q2: G35 G4) 43)
(41, 92), (q1,93), (q1,94), (92, G3), (G2, G4), (g3, G4)

Hence, the search sessions, or query sequences, may get greater frequency of occur-
rence from the same raw dataset.

3) Sensitivity control. In order to make sure the presence or absence of each
individual user would not make too much of an impact on the statistics that we
release, the sensitivity Af of Agession 1S controlled by adjusting the max number of
sessions per user [; and the max number of queries per session /,. Sessions longer than
l4 queries are trimmed down to only the first [, queries. As a result, the sensitivity is

kept as

Af =1y x (2 —1-1,) (4.4)

4) Session release decision. We denote the session counts for a session S after

subsequence mining as C'(S). Then we apply the Laplace mechanism on the session
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counts by adding i.i.d. noise to each count. We release session S iff. C'(S)+noise > K,
where noise ~ Lap(0,b), and K is the session frequency cut-off threshold. The decision

of whether to release session S is made based on:

if C(S) + Lap(0,b) > K, Release session S
otherwise, Do not release S

5) Session count release. For all sessions S that we have decided to release, their
counts generated from the previous step form a biased sample since they are all
selected because their values are greater than K. However, we need to make sure
the actual released counts still follow an unbiased Laplace distribution Lap(C(S),b).
We therefore need to do the sampling again and release the sessions together with
their perturbed count C(S) + Lap(0,b). The released perturbed frequency count
C(S)+ Lap(0, b) follows the distribution of Lap(C(S),b), which becomes the Laplace
Mechanism [30] for Differential Privacy.

6) Output: A set of frequent sessions along with their corresponding counts,
{(S,C(5))}, while each session S is in the form of an ordered sequence of free text
queries. Table 4.3 shows an example output by part 1 of Agession-

I state here that this session log anonymization part of the algorithm Agcssion

achieves (¢, ¢)-differential privacy while € and § are:

e=1,2 —1—1,)- (In(Maz{e"’ 1+ m}) +1/b) )

L(2h —1—1,)— K

§ = 0.50,(2" —1—1,) - exp( ; )

I leave the proof for this in chapter 5.
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4.2.1.2 PART 2 OF Agcssion: RELEASING QUERY CLICK-THROUGH DATA.

We also release click-through data, i.e. a query and the URLs that a user clicked for
the query. Part 2 of the algorithm Ag.ssi0n releases the click-through data as a tuple
of query, clicked document and the count for the pair, [¢, d, ¢(q, d)]. The released data
satisfies the (e, §)-differential privacy. The count ¢(q, d) is the frequency after adding
Laplacian noise for a query-URL pair (g, d).

Part 2 of Agegssion is similar to algorithm Acy;., in Chapter 3. However, I design part
2 of Agession to satisfy (e, d)-differential privacy rather than e-differential privacy in
Aciier- This makes the click-through part of the algorithm more general and without
the reliance of any external dataset such as the query pool concept I proposed in
Chapter 3.

This part of the Agession algorithm takes in the following inputs: the query log
@, query click records limit per user [, the Laplace noise scale b, and the frequency
threshold K. Note that both parts of the A,.ssi0n algorithm need to share the same
privacy parameter settings b and K. It is because the overall privacy guarantee is
bottlenecked by the algorithm that has the weaker differential privacy guarantee.

This part of the Agession algorithm releases the click-through data to assist session
data release using the following steps:

1) Sensitivity control for clicks. For each user in @), we only keep the first [ click
records for each user and ignore the rest from the same user to make sure that data

from any user will not contribute too much to the overall frequency statistics.
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2) Query-clickthrough release decision. This is similar to step 4 in part 1 of the
algorithm. We first count the total number of occurrences for each query-clickthrough
pair as C(q,d). We then decide to release a pair (g, d) iff. C(q, d) + noise > K, where
noise ~ Lap(0,b) and K is the frequency cut-off threshold.

3) Release query-clickthrough tuples. This is similar to step 5 of the part 1 of
the algorithm. If it has been decided to release a (q,d) pair at the previous step, we
perform a sampling again from the Laplacian distribution for added noise and release
a 3-tuple [q,d, C(q,d) + noise] where the new i.i.d. noise ~ Lap(0,b); otherwise, we
won’t release anything for the (g, d) pair.

4) Output: A set of query-clickthrough tuples in the form of (Query ¢, Document
d, Fuzzed Count C(q,d) 4+ noise). Table 4.2 shows an example output by part 2 of
Asession-

This part of the algorithm Agession achieves (e, §)-differential privacy while € and

0 are:

e=1-In(Max{e'®, 1+ +1/b

et 1) (4.6)
- K
0=0.50- e:np(lT)

This part of the algorithm is similar to a simpler version of the anonymization algo-

rithm proposed in [66], and T omit the proof in this dissertation.

4.2.2 COMPOSITION ANALYSIS

Table 4.2 and 4.3 present examples of the outputs from the two parts of the algorithm.
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Table 4.2: Agession Output example part 1: Click-through data.

Query Clicked URL Counts
weather http://www.weather.com 4190
weather http://weather.yahoo.com 1035
aol weather http://weather.aol.com 30
aol weather http://aolsvc.weather.aol.com 16
blue book  http://www.kbb.com 33
blue book  http://www.nadaguides.com 1
hairstyles  http://www.hairfinder.com 5
hairstyles http://www.1001-hairstyles.com 19
hairstyles http://www.hair-styles.org 21
hairstyles http://hairstyles.free-beauty-tips.com 16

Table 4.3: Agession Output example part 2: Session data.

Session 1 Session 2
q1=daily record morristown nj | ¢g;=ny lottery
go=star ledger newark nj g2=pa lottery
qz=google qs=nj lottery
qs=ny lottery
Counts: 11 Counts: 16

It is worth noting here that the two parts of the algorithm anonymize and release
data independently. They can be applied separately. Moreover, both parts of the
algorithm may be replaced with other query log anonymization approaches that gen-
erate the same output format. For instance, the second part of the algorithm may

be replaced by the algorithm I proposed in Chapter 3 which achieves e-differential

privacy.
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According to Theorem 3.16 from the The Algorithmic Foundations of Differential
Privacy [32], the composition is “automatic” when we are combining multiple building
blocks designing differentially private algorithms. If Part 1 of the algorithm achieves
(€1,01) differential privacy, while Part 2 of the algorithm achieves (s, d2) differential
privacy, then the overall algorithm achieves (e = €1 + €3,0 = J; + 02) differential
privacy.

For instance, if we perform query log anonymization using both parts of the
Agession algorithm for the same input query log, then the overall algorithm will achieve

(€, §)-differential privacy, where

e=1-In(Max{e'®, 1 + +1/b

1
SRy

+ ls(2lq o lq) : (ln(Max{el/b, 1+ m}) + 1/[)) (47)

L(2e—1—1,)— K
7 )

|- K
0=0.5- exp(T) +0.50,(2" — 1 —1,) - exp(

4.3 UTILITY MEASUREMENT WITH QUERY SUGGESTION AND SESSION SEARCH

Data utility should be evaluated task-dependently. However, most prior work simply
measures the utility by how much data is kept. In our experiments, we reveal that
amount of kept data and the actual task-dependent utility do not agree. In this
research, we use real IR tasks — query suggestion and session search — and classic IR

evaluation metrics to measure the utility of a query log after anonymization.
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4.3.1 QUERY SUGGESTION

Query Suggestion is a typical IR application that is using web search query log as
well as session log data. I use query suggestion as the principle application to present
how the anonymized query log can be used to support session-based tasks. In this
section, I introduce the query suggestion task as well as the corresponding utility

measurement.

4.3.1.1 THE TASK OF QUERY SUGGESTION

Query suggestion is a popular IR task. The goal of the task is to predict the next
search query that a user is going to write. Given a session S with n 4 ¢ queries, S =
(@15 925 oy Gn—15 Gns Gnt1s - Gn+t) the task of query suggestion is to generate a ranked
list of suggested queries {q}, ..., ¢/, } as the candidates of the next query after g,. For
evaluation purposes, we use the queries that are after ¢, in the same session and are
generated by the same user as the ground truth. That is, Truth(¢,) = {@n+1s - Gnit }-
The results can then be evaluated by comparing between the generated ranked list
{¢}, ..., ¢,,} and the ground truth set Truth(qy,).

In this work, we use classic IR metrics Precision and Recall to evaluate the utility

for query suggestion. In particular, we report Precision@5 and Recall@5:

5 5
1 1
PrecisionQb = R ;:l Hit(i); Recall@b = n ;:l Hit(i) (4.8)
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1, if ¢ € Truth(q,).
Hit(i) =
0, otherwise.

where t = |Truth(q,)|, Hit(i) shows whether the i predicted query ¢ hits the ground

truth, 1 < < 5.

4.3.1.2 QUERY SUGGESTION USING ANONYMIZED LOGS

We build two graphs G, and G from the anonymized log )’ to support query sugges-
tion. We use the first graph, a query-flow graph G, = (V;, E;), to organize queries in
sessions. We use the second graph, a query-URL bipartite graph G = (V;, Va, E), to
organize relations between queries and URLs in anonymized click-through data.
With the help of the anonymized session information, we are able to create a
query-flow graph as in Boldi et al. [9]. The query-flow graph G organizes the ordered
query transitions from the query sequences in @'. In particular, Gy = (Vi, Ey). Vi
contains the set of query vertex in the graph and F; is the set of edges connecting
queries that have occurred adjacently. In G, we denote e(qg;, ;) as the edge weight
between the transition from g; to ¢;, which is number of co-occurrences of ¢; and ¢; in
the anonymized session log. Note that ¢; is any query that appears after ¢; and is not
restricted to be the query immediately after ¢; in the session. We also denote d(g;) as
the out-degree of ¢;. Then the probability of ¢; following ¢; in the same session can

be calculated as e(g;, ¢;)/d(¢;), if only based on the session data.
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We also use the query click-through data. We organize queries and their corre-
sponding click-through URLs into a query-URL bipartite graph G = (V,, V4, E). V,
is the set of query nodes, V; is the set of document (URL) nodes, and E' is the set
of weighted edges in GG. According to this bipartite graph, we represent each query
q € V, as a vector of weighted documents 7 Then we calculate the similarities
between any two queries ¢; and g¢; by their normalized dot product g, - ¢ /(|7 |-|2;])-
We use a variation of a state-of-the-art query suggestion approach [13] to quantify
the similarities between the queries. The difference is that we generate a ranked list
of relevant queries for each query ¢, rather than allocating queries into clusters [13].
The ranked lists of the relevant queries is equivalent to the results generated based
on the Euclidean distance between the normalized feature vectors as in [13] according
to the geometric properties of the vector space.

Finally, we combine the two scores from both G4 and G. The overall probability
of having the candidate query g; follow g; is calculated as:

_>

, q] e(gi, q5)
P(qi, q;) = Aw*‘(l A) () (4.9)

where A is a parameter to control the value contributed between G and G.

4.3.2 SESSION SEARCH

Session search is also a major session-based IR application. I use session search as

another example to present how the anonymized query log can be used to support the
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task. In this section, I introduce the session search task as well as the corresponding

utility measurement.

4.3.2.1 THE TASK OF SESSION SEARCH

Session search is a complex search process involving multiple search iterations trig-
gered by continuous query reformulations. It gets the name of session search because it
is a document retrieval task for the entire session, rather than for individual queries.
With the help of the anonymized query logs, the goal of the task is to generate a
ranked list of documents [dy, ds, ...d,,] relevant for the entire session. We use the offi-
cial TREC [63] evaluation metrics for session search: nDCG@10 [53| (Equa. 4.10) and
MAP (Mean Average Precision) (Equa. 4.11), as the utility metrics of the query log

used for session search.

NRet 1

nDCG@10(S, D) = {Z W}/{Z m} (4.10)

MAP(S, D) {Z -rel,)} /Nre (4.11)

where D is the ranked list of documents retrieved for session S by our ranking algo-
rithm. rel, takes the value of 1 when the r** ranked retrieved document d, € D is
relevant. Otherwise, rel, = 0. P(r) is the precision at cut-off r in the list. Ngy is

calculated by Min{total number of relevant documents for S,10}.
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4.3.2.2 SESSION SEARCH USING ANONYMIZED LOGS

State-of-the-art work [43, 78| in session search considers the procedure of session
search as a Markov Decision Process. In this paper, we first calculate the relevance
score score(q;,d) for each query ¢; in session S using the anonymized query log @’
and generate a ranked list of relevant documents for each of them. Then, we combine
the results from each query of S by an infinite horizon formula as proposed in Guan
et al. [43].

Generate ranked lists of documents for each query. Different from the
approach we used for query suggestion, here we apply a graph-based random walk
framework [24] to support session search. We organize both session data and query
click-through data into a graph G’ and apply random walk on the graph. We define
the graph as G' = (V, Vy, E, E,), where V, is the set of query vertices, V; is the set of
document (URL) vertices, E is the set of weighted edges between a query vertex in
V, and a URL vertex in Vg, and Ej is the set of edges between query vertices in V.

Using the anonymized query click-through data, we calculate the edge weights
w(q, d) between a query vertex ¢ € V, and a document vertex d € V; in a way similar
to the click model proposed by Craswell and Szummer [24]. Using the anonymized
session data, we calculate the directed edge weight w(g;, g;) as the overall frequency
of the ordered co-occurrence between ¢; and ¢; in the released sessions, while ¢; € V

appears later than ¢; € V, in the same session.
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Now we can run the random walk model [24] on graph G’. The transition proba-

bilities is calculated by:

(1— A2l oy £

P(vi,v;) = St (4.12)
A =7

where A is the self-transition rate in random walk, v;, v;, v, € V, UV, are vertices of

G, and w(v;,v;) is the transition weight between vertex v; and v; as defined earlier.

For each given query ¢ in the test set, we rank the URLs according to the

descending order of the probabilities of staying at the corresponding URL after the

random walk. It generates the relevance score: score(q,d) = 1/(rank of d in the ranked
list) for each pair of (¢, d).

Aggregate scores for the entire session. Given a session S = [q1, G2, .-+, Gn]

from the test set, we first generate document relevant scores score(q, d) for each query

¢; as described above. Then, according to Guan et al. [43], we aggregate the scores

for the entire session S as

score(S,d) = Z " score(qi, d) (4.13)
i=1

, where 7 close to 1 is the discount factor which makes earlier queries in the session

contribute less (7 < 1) or more (7 > 1) to the aggregated session relevance score.

4.4 EXPERIMENTS

We evaluate our algorithms on the 2006 AOL dataset. The entire query log contains

36,389,567 search records. In total, there are 10,154,742 unique queries and 19,442,629
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click-through records from 657,426 unique users over three months. We use nine-tenths
of the query log as the original log ) to be anonymized, and reserve one-tenth of the
data as the test set Q1. for evaluating the IR applications. In the experiments, we
compare a few query log anonymization schemes and use the anonymized logs ()’

generated from each of them to test on the query suggestion task.

4.4.1 ANONYMIZED METHODS TO COMPARE

The logs used in our experiments include the Original, KA (logs anonymized by k-
anonymity), DPs (logs anonymized by differential privacy, click-through data only),
and D Ps (logs anonymized by differential privacy, containing both session and click-

through data). The details of them are described as follows:

e Original: The original query log ) without anonymization.

e KA(K): The query log anonymized by the k-anonymity [105]. This log contains
frequent click-through data from the original log while preserving certain privacy
with k-anonymity. Major steps of the k-anonymity query log anonymization

algorithm are as follows:

1. Input: a query log @, query click-through frequency threshold K.

2. Count the number of users who formulate query ¢ and click document d
as ¢(q, d).

3. Release all tuples [q,d, c(q,d)] iff. ¢(¢,d) > K, where K is the frequency

cut-off threshold.
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4. Output: A set of tuples in the form of [Query ¢, Document d, User Count

c(q,d)]-

e DPc(€,0;1,b,K): The second part (click-through data) of the query log anonymized
by the (¢, d)-differentially private algorithm Agession as presented in section
4.2.1.2, where [ is the query click limits per user, b is the Laplacian noise scale,
and K is the frequency threshold. The output format of the log is the same as

KA(K).

o DPgs(€,6;TGap,ls,lq,b,K): The entire output of the query log anonymized by the
(€, 6)-differentially private algorithm Agegsion as presented in section 4.2.1. Ttz
is the session timeout threshold in minutes, [, is the session limits per user, [, is
the query limits per session, b is the Laplacian noise scale, and K is the frequency
threshold. The anonymized log contains both session and query click-through

data.

In Table 4.4, I compare the level of differential privacy guarantees in DPg with
different parameter settings. By comparing the typical runs with different parameter
settings, I observe the € value is very sensitive to session limit per user [y and query
limit per session [,, while the § value is also very sensitive to the value of noise scale
b and frequency threshold k.

There are no hard rules for selection of parameter values. Generally, smaller €
and 0 values lead to stronger privacy guarantees but the § value cannot be too large.

This gives the query log owner flexibility to pick proper privacy parameter values
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Table 4.4: Privacy levels € and § for typical Agession TURS.
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Table 4.5: Query suggestion results using different query logs.

Run Precision@5 | Recall@b | # of Evaluated Sessions
Original 0.0421 0.1402 18,475

KA 0.0693 0.2312 9,494

DP¢ 0.1133 0.3891 4,144

DPg 0.1139 0.3911 4,119

in order to achieve a good balance between privacy and utility. Many of the listed
runs are acceptable to use. For instance, DPg(e

l,=1,l,=3,b=1,k=20) is one of the good runs that I am using to support the following

IR tasks.

4.4.2 QUERY SUGGESTION

The query suggestion approach we proposed earlier is based on the calculation of

similarities between query pairs which can be generated from (’. In this section, we
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use four different types of query logs as presented in section 4.4.1 to support query
suggestion.

The effectiveness of a query suggestion approach is evaluated by comparison
between the predicted ranked list of candidate queries and the ground truth. For
each session in the test set, we perform query suggestion for each of the prefix query
sequences and use the remaining queries of the session as the ground truth.

Table 4.5 presents Precision and Recall at the ranking position 5 for query sugges-
tion, the number of sessions in the test set that can still be used by query suggestion,
the number of the evaluated or remaining sessions. The major parameters for the

anonymized query logs we used are:
o KA(K=20)
e DPq(e-8,6-2.25%107;1—4,b—1,K—20)
o DPg(e=8,0-2.25%10"";T0,—30, [,—1,l,—3,b—1,K=20)

where all three anonymized runs share the same frequency threshold value k£ = 20 for
a fair comparison.

As we can see, the number of test sessions that our algorithm successfully evaluated
in DP¢ and DPg (4,144 and 4,119) are much fewer than in KA (9,494) and Original
(18,475). Such information loss is inevitable for getting strong privacy protection.
The two runs based on differential privacy successfully suggest queries for a similar

amount of sessions. The KA run based on k-anonymity suggests queries for twice as
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many sessions as the runs based on differential privacy would do. It is because k-
anonymity doesn’t limit the number of records from each individual while differential
privacy does. Therefore, in terms of the quantity of the test sessions that could be
evaluated, k-anonymity wins differential privacy, if both are constrained by the same
cut-off threshold k.

Table 4.5 also presents the IR utility measures: Precision and Recall. DP» and
DPg outperform the other runs. Especially, DPs achieves the best utility results in
both Precision and Recall. The KA run works less effectively in terms of IR utilities
than DP- and DPg.

An interesting finding is that the number of evaluated sessions contradicts task-
specific IR utility measures. That is, the runs releasing less sessions yield better IR
utility scores. We think the underlying reason is rooted in the nature of IR. It is
because (a) the records with the higher frequency (the more common ones) have a
greater chance to be released by differential privacy; and (b) they are also records
that are positively correlated to producing relevant results for an IR task because
they reflect similar behaviors from many different users and are better and more
effective data records. That is to say, although DPs and DPg release less data and
suggest fewer sessions/queries, their released content happen to be more useful to IR.
This result is very encouraging for us to advocate the use of actual IR utility metrics

over data percentage.
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Table 4.6: Session search results using different query logs.

Run nDCG@Q10 | MAP | # of Evaluated Sessions
Original | 0.24792 | 0.19073 1,007,170
KA 0.19740 | 0.15363 782,873
DP¢q 0.21875 | 0.17779 433,375
DPy 0.21879 | 0.17783 433,375

4.4.3 SESSION SEARCH

Although I use query suggestion as the major IR application to examine how the
anonymized query log can be used to support session based applications, I implement
additional experiments by applying the anonymized logs to support session search. I
use the same three anonymized logs and the one original log as described earlier to
apply to experiments on session search. The effectiveness of a session search approach
is evaluated by comparing the generated ranked list of URLs for the session and the
set of ground truth relevant URLs. In the AOL query log, we use the actual clicked
URLs in the test session as the relevant document (ground truth) of the session.
Table 4.6 shows evaluation results for session search. The parameters for the
anonymized query logs we used are the same with the 4 runs we used for query
suggestion in Section 4.4.2. According to Table 4.6, the baseline run Original pro-
tects no privacy while achieving the best utility and # of evaluated session. The DP
runs achieve nDCG10 and MAP scores better than the k-anonymity run. This means

that the added noise in DFPs runs are acceptable and not hurting the IR utility.
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However, the DP runs successfully evaluated fewer sessions compared with both the
k-anonymity run and the un-anonymized run, which matches the tradeoff between pri-
vacy and data loss (not necessarily utility loss) as we observed in the query suggestion
task.

We also observe that the DPs run with anonymized session data outperforms
the DP run without session data, which confirms the usefulness of the anonymized
session data. In addition, by comparing all three anonymized runs with the baseline
run using un-anonymized query log, we see a smaller amount of test sessions that
could be evaluated while privacy level gets stronger from no privacy to k-anonymity

then differential privacy.

4.4.4 PARAMETER SETTINGS

In Table 4.4, we compare the privacy level in DPg with different parameter settings.
By showing the typical runs and their parameter settings, we observe that € is very
sensitive to the max number of sessions per user [, and the max number of queries
per session [,. Moreover, ¢ is also very sensitive to the noise scale b and the frequency
threshold K.

There are no hard rules for setting the parameters. Generally, smaller ¢ and
values lead to stronger privacy guarantees, while d value cannot be too large. This
gives the query log owner, usually the commercial search companies, more flexibility

to pick proper privacy parameter values in order to achieve a good balance between
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privacy and utility. In Table 4.4, many listed runs are acceptable to use. For instance,
DPg(e = 8,0 = 2.25 x 1077; T,,=30, ls=1,l,=3,b=1,k=20) is one of the good runs

that we use in the experiments.

4.4.5 PRIVACY-UTILITY TRADEOFF

In this section, we run further experiments to analyze the privacy-utility tradeoff
during query log anonymization. It is important to show the consequences of using
varying anonymization algorithms and using different parameter settings. The com-
parisons and suggestions we provide in this section should be able to help data owners
make decisions when they need to anonymize a query log.

Figure 4.2 shows the scale of the anonymized data with varying frequency
threshold K. Each data point in the figure corresponds to an anonymized query
log. While changing the K values, we fix the other parameters in Figure 4.2 as

Teap=30,1=1,1,=3,0 = 4, b=1.
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Figure 4.2: Data lost: Distinct click-through tuples and sessions after anonymization
with varying frequency threshold & values.
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Figure 4.2 (a) presents the change of distinct click-through tuples in query logs
anonymized by KA; Figure 4.2 (b) presents the change of distinct click-through tuples
in query logs anonymized by DP¢, while Figure 4.2 (c) presents the variation of dif-
ferent released sessions by DPg. According to Figure 4.2, the scale of the anonymized
query log is very sensitive to the frequency threshold parameter K. The anonymized
log suffers a significant amount of data loss as K increases. Based on Eq. 5.17, the
differential privacy parameters ¢ and § (especially ) decrease as K increases, which
leads to even stronger privacy. Hence, the stronger privacy we require for differential
privacy, the more data we lose in the anonymized query logs.

Figure 4.3 shows the relationships between the number of sessions being evalu-
ated and (a) the frequency threshold K, (b) Precision@5 and (c) Recall@5 for the
query suggestion task. Figure 4.3(a) reveals that if we want to evaluate a certain
amount of sessions, the K used in differential privacy could be much less than the
K used in k-anonymity. Figures 4.3(b) and (c) present the relationship between the
application-based utility score and the amount of evaluated sessions. We observe that
the differential privacy runs have better utility than the k-anonymity runs when the
sessions being evaluated are no more than a certain value, around 5,500 in our case,
while the k-anonymity runs may achieve even better utility than the differential pri-

vacy runs if there are more sessions evaluated.
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Figure 4.3: Query suggestion: Utility versus the number of evaluated sessions

Moreover, we observe from the analysis and experimental results that fewer input

records from each user lead to stronger privacy. According to the mathematical char-
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acteristics of (e, d)-differential privacy, the ¢ value is linearly related to the sensitivity
value in our scenario. In other words, the fewer records we take from each user, the
smaller ¢ value we can guarantee and thus achieve stronger privacy, and vice versa. For
instance, if we double the number of input records per user [ (or [,), the anonymization
mechanism will be with a doubled ¢ value. We therefore suggest including raw data
from more users while limiting the number of sessions and click-throughs accepted
from each user. The experiments based on different anonymization algorithms reveal
a privacy-utility tradeoff. It seems that the balance between privacy and utility should
be considered at the very beginning when we select the parameters for the anonymiza-

tion methods.

4.5 CHAPTER SUMMARY

Query log anonymization is challenging. It becomes even more challenging when
search sessions are involved. In this chapter, I research how to release session data
from query logs with differential privacy. I propose methods to evaluate the utility
of the anonymized session data and generate experiments to support session-based
IR application. The results show that our session-based query log anonymization
algorithm not only satisfies differential privacy but also is sufficiently capable of sup-
porting complex session-based IR applications such as query suggestion and session

search.
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To answer the research question of how to release a query log containing session
data, 1 think there may not be a gold standard for this. Absolute privacy requires
absolute removal of the data, while absolute utility requires absolute maintenance
of the data. The best way to protect data depends on the goal of the protection,
or over which metric we are optimizing. Practically, the most appropriate way to
anonymize query logs depends on how we want to use them and what application
are we aiming to support. We believe our differentially private approach is good
enough to protect privacy during query log anonymization. Furthermore, experiments
have shown that the query logs anonymized by our algorithm are very effective to
support query suggestion, which answers the other research question of how well can
anonymized query logs containing search sessions be used to support query suggestion.

Moreover, we observe from the analysis and experimental results that accepting
fewer input records from each user lead to stronger privacy. According to the math-
ematical characteristics of (e, §)-differential privacy, the ¢ value is linearly related to
the sensitivity value in our scenario. In other words, the fewer records we take from
each user, the smaller § value we can guarantee and thus achieves stronger privacy,
and vice versa. For instance, if we double the number of input records per user [ (or
ls), the anonymization mechanism will be with a doubled § value. We hereby suggest
including raw data from more users while limiting fewer sessions and click-throughs

accepted from each individual user. Therefore, the tradeoff and balance between pri-
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vacy and utility should be considered at the very beginning when we decide the

amount of data as input.
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CHAPTER 5

PROOFS OF DIFFERENTIAL PRIVACY

This chapter provides proofs of differential privacy for the query log anonymization
algorithms I proposed in the previous chapters. Chapter 3.2 has presented the pre-
liminaries in differential privacy. According to the definition of differential privacy, a
randomized query log anonymization algorithm satisfies (e, d)-differential privacy if
and only if it can achieve Equa. 3.1. Therefore, the following proofs I provide for both
algorithms are focusing on how to prove Equa. 3.1 in the corresponding scenario.
Chapter 5.1 presents proof of differential privacy for my query log anonymization
algorithm Agy;. for single queries presented in Chapter 3. Chapter 5.2 presents proof
of differential privacy for my query log anonymization algorithm Agesson fOr sessions

presented in Chapter 4. Chapter 5.3 summarizes this chapter.

5.1 PROOF OF Aciick

I now present a general privacy proof sketch that analyzes the privacy guarantees of
my approach in Algorithm Acgyer (Chapter 3.4, query log anonymization for single
queries). I prove that the algorithm satisfies (e, 0)-differential privacy as I presented

in Chapter 3.4. Recall that K, ¢¢, ¢, b, by, b. and b; are parameters in our algorithm
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as defined previously. @) is the original query log as input to the algorithm, Q.ecan
is the set of queries from @) that are possible options for release because they occur
often enough while keeping at most gy queries and ¢y clicks from each user. ), is an
externally generated stochastic query pool containing a large set of queries. Suppose
each possible query ¢ in the infinite domain has a probability of p, € [0,1] to be
included in the pool @,. In practice, the value of p, depends on the source that is
used to generate the query pool. Practically, major commercial search engines may
create a large pool @, satisfying a p, value close to 1.

Here is Theorem 1 as I presented it in Chapter 3:

Theorem 1: The query log anonymization algorithm presented in Algorithm

Acuier satisfies e-differential privacy, where € is defined as:

el/b 1
a = Maxzx{ o 1+ S R—T)/b 1}

(5.1)
€ =qy - In(a) +qp /by + ¢y /be

In order to prove Theorem 1, first consider the following theorem:

Theorem 2: The generation of ¢ egucea in Algorithm Aey;q, satisfies (qf - In(a))-
differential privacy.

Theorem 2 is necessary for our algorithm to achieve e-differential privacy rather
than (e,0)-differential privacy. It makes our algorithm different from previous work [66]
and helps us achieve stronger privacy guarantees. Being more specific, our Theorem
2 achieves stronger privacy guarantees than the Select-Queries procedure in [66],

while the remainder of our algorithm has a similar structure to theirs in terms of
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adding Laplacian noises. Theorem 1 is now a straightforward proof if we combine our
Theorem 2 and Lemmas 2,3, and 4 as presented in [66].
I now prove Theorem 2, thereby showing why I achieve such a stronger privacy

notion.

5.1.1 PROOF OF THEOREM 2

Proof . 1) We first consider the case in which ¢y =1, K>1. @y, Q2 are two neighboring
search logs, and ()2 has one more user than (), since g5 = 1. This means that (), has
one more query ¢*. Also, we partition any set of query sets Q into two subsets: Q+,
the query sets in Q that contain ¢*, and Q‘, the query sets in Q that do not contain
q*. The proof structure is similar to the Lemma 5 proof in Korolova et al. [66]. Here
we only show why our algorithm has a stronger privacy guarantee than theirs. When
q* € @1, we can prove that the algorithm satisfies (1/b,0)-differential privacy using
a similar idea as in Korolova et al. [66]. Here we give the derivatives in the case of
¢ ¢ Q1,q4° € Q. For all ¢* € Q,,¢" ¢ Q, we have M(q,Q) = 0, which is different

from Korolova et al. [66]. Differential privacy requires the following two inequalities.

PIA(Q1) € Q] < aPA(Q2) € Q] +6 (5.2)

P[A(Q2) € Q] < aP[A(Q1) € Q] + 6 (5.3)
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i). For inequality 5.2: First, we consider the case when ¢* is not included in the
output. Then P[A(Q;) € Q7] = Plg* not released by A(Q,)] - P[A(Q1) € Q7]

Therefore,

PIA(G1)
PIA(Q2)

] 1 1

] Pl ¢ A(Q)]  1- 0.5eap(1K)

€@ (5.4)
€Q™
Next, we consider the other case when ¢* is included in the output. Since ¢* ¢ @,

A(Qq) € Q" will only be possible when ¢* is generated from the query pool Qp-

Therefore,

PlA(Q1) € Q"]
= Plg" € Q) - P[0+ Lap(b) > K| - P[A(Q1) € (@7 \ ¢")] (5:5)
= py - 05eap(~ ) PAQ1) € @\ ")

On the other hand, ¢* € Q,, which means A(Q,) € QT requires ¢* to be output

from Q)s:

P[A(Q2) € Q™)
= P[1 + Lap(b) > K] - P[A(Q1) € (Q" \ ¢")] (5.6)

) PLa@) € @7\ a)

1
= 0.5exp(

Therefore, we achieve an upper bound such that:
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P[A(Q1) € Q] _ P[A(Q1) € @] + P[A(Q1) € Q7]
PlA(Q2) € Q]  P[A(Q2) € Q1] + P[A(Q2) € Q]
< M(J,IE{P[A(Ql) € C?+] , P[A(Ql) € C?_]}
PIA(Q2) € Q1] P[A(Q2) € Q7] (5.7)
_K ’
= Maz{p, ewp(l_b ), ! }

The last step is because p, € [0,1), exp(—3) € (0,1). Hence we get p, - exp(—3) <

1 . . _ 1 o
1< Toseen(=E)- Therefore, inequality 5.2 holds for a = To05ep(EK) 0=0

it). For inequality 5.3:

Here I give a stronger upper bound in this case with the help of the query pool

Qp-

P[A(Q) € Q] _ P[A(Q2) € Q']+ P[A(Q2) € Q]
P[A(Q1) € Q]  P[A(Q1) € Q*]+ P[A(Q1) € Q7]

Ky Pla@y) € (07 \a'})

7)) - PLA(Q2) € Q71}/{05py
(5.8)

eap(~ ) PLA@Q) € 10\ ¢'}] + PIAQ)) € Q)
0.5ea:p(%) 1-K
5my - conl )’ 1= 0.5exp(——)}

exp(1/b) . o 1-K :e:vp(l/b)
T , 1 —0.5exp( 5 )} v,

< Max{

= Max{

Therefore, inequality 5.3 holds for a = e;;b, 0 =0.

Combining the 2 cases, I conclude that our algorithm satisfies the (In(a),0)-

differential privacy, where:
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a= Max{el/b, e —}
1 —0.5exp(=5~) Pg (5.9)
el/b 1 .
= Maz{ 1+ — }
Pg 2eap(=5—) — 1

which concludes the proof when ¢y = 1.

2) Now we generalize the proof for cases when ¢ > 1, which leads the approach
from record level differential privacy to user level differential privacy. While our algo-
rithm achieves differential privacy with 6 = 0, the generalization to situations with
arbitrary ¢ values becomes straightforward. Since @); and @), differ by one user,
without loss of generality, suppose ()> contains one more user, i.e. it contains ¢

additional queries at most, namely g1, g2, ...qq,- Then we have the following:

A~

PIA(Q1) € Q] < a- P[A(Q1 + q1) € (]
(5.10)
< ... <a% . PlA(Qy) € Q]

This concludes the proof of Theorem 2 that the generation of Q) cquceq is user level

(qf - In(a))-differentially private.

5.2 PROOF OF ASession

Now I present a general privacy proof sketch that analyzes the privacy guarantees
for the session log anonymization part of my approach Algorithm Agession (Chapter
4.2, query log anonymization for sessions). I prove that the algorithm satisfies (¢, d)-

differential privacy as I presented in Chapter 4.2.
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According to the definition of (e, d)-differential privacy, a query log anonymization
algorithm A should satisfy the following two inequalities for all neighboring query logs

()1 and )5 in order to achieve DP.
P[A(Q)) € Q] < aP[A(Q:) € Q] + 6 (5.11)

P[A(Qs) € Q] < aP[A(Q,) € Q] + 6 (5.12)

A major difference between our algorithm Ag.ssion and previous DP algorithms
[40, 66, 135] is that we consider the query sequence of search sessions rather than
individual queries or click-throughs as the unit to be counted and to be protected.
However, a common mechanism is shared by all the work, which is achieving the
requirements of (¢, §)-differential privacy (Equa. 5.11 and 5.12) by adding i.i.d noise
from the Laplace distribution on the data. A proof of the mechanism can be found
in the Lemma 1 of Section 5.1 of Korolova et al. [66]. It shows that adding Laplacian

noise would be able to achieve (d - In(«), d4,)-differential privacy, where

1

_ 1/b
a= Max{e’’ 1+ 2o — 1 1}

(5.13)

Satg = 0.5d - exp( ) (5.14)

Now let’s evaluate the € and ¢ values in our algorithm. In [66], d is the max
number of queries per user and equals the sensitivity in their algorithm. That is
to say, d = Af [66]. In our algorithm, the sensitivity Af can be greater than the
maximum of sessions per user [, because the subsequences of original sessions also

contribute to the sensitivity value. If we consider each of the Af counts caused by
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a user as an individual record, the privacy guarantee of Step 4 in Agession Would
be equivalent to d = Af as in Lemma 1. Hence Step 1 to Step 4 (to decide which

session may be released) of Agession satisfies (Af - In(a), d4,)-differential privacy,

where o = Maz{e'/* 1+ m}, dalg = 0.5Af-exp(Af;K). Step 5 of Agegsion 1S a
standard procedure in differential privacy [30]. Such released session counts could be
used to weigh query transitions in a session, which is helpful for the IR algorithms.
This step itself achieves (Af/b, 0)-differential privacy. Therefore, the overall Agession
algorithm achieves (Af - (In(a) 4+ 1/b), d4,)-differential privacy, while o and 044 are
defined as earlier.

Next, we need to calculate the exact value of Af in order to finalize the privacy
level € and 4. Sensitivity A f is defined as the maximum difference of the statistics that
could be made by the data generated from one user. In the worst case, the particular
user differing between two neighboring datasets may issue [, sessions, and each session
may contain at most [, queries. Given a session containing [, queries, the amount of
subsequences containing at least two queries is 2 (total subsequences) -1 (the empty
sequence) - [, (subsequences containing only 1 query). Hence each input session with
l, queries contributes to a count by at most 2's — 1 —, sessions. Therefore, the overall

sensitivity of our algorithm is:

Af =1,x (2 —1—1,) (5.15)
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By plugging in the sensitivity value Af into

e=Af-(In(a) +1/b)

Af - K
—)

(5.16)
d =0.5Af - exp(

, our session release approach can achieve (¢, d)-differential privacy while e and ¢ are:

1
e=1,(2 —1—1,)- (In(Maz{e'* 1 + s 1) T/

(24 —1—1,)— K
7 )

(5.17)

§ = 0.50,(2" — 1 —1,) - exp(

5.3 SUMMARY

In this chapter, I present proofs of differential privacy for the algorithms Acer as
I presented in Chapter 3 (query log anonymization for single queries) and Agession
as I presented in Chapter 4 (query log anonymization for sessions). The Ay algo-
rithm achieves (e, 0)-differential privacy while the algorithm Agession achieves (e, 6)-

differential privacy.
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CHAPTER 6

CONCLUSION

This chapter concludes my dissertation. Chapter 6.1 summarizzes my research in
this thesis. Chapter 6.2 offers discussions of some interesting insights of my research.
Chapter 6.3 presents the potential future work of this thesis. Chapter 6.4 concludes

the chapter with the impact of this work.

6.1 RESEARCH SUMMARY

Query log anonymization is an important and challenging task which gets even more
difficult when session data is involved. In general, the ultimate goal of the research
work I present in this dissertation is about the tradeoff and balance between privacy
and utility of web search query logs.

In this dissertation, I first introduce a framework for anonymizing query logs and
evaluating their web search utility. I make use of differential privacy, which is a strong
privacy notation, to anonymize the logs. More importantly, I use real IR application
to measure the utility of the anonymized query log. The experiments show that the
anonymized query log can be well used to support ad-hoc search. The web search

algorithms using anonymized logs do not perform significantly differently from those

115



using the original logs. Since high-level privacy has been guaranteed by the mechanism
of differential privacy, I suggest that search engine companies use less strict parameter
settings to maintain the high utility of the anonymized logs.

Furthermore, I expand the work to involve search session data. I propose a query
log anonymization mechanism with differential privacy that can maintain both click-
through data and session data in the anonymized query log. Then, I use typical
session-based IR applications, which are query suggestion and session search, to eval-
uate the utility of the anonymized session log. Experiments show that the session log
anonymized with differential privacy can be well used to support these IR applica-
tions.

In summary, by developing a proper framework for query log anonymization with
the systematic analysis of both privacy and utility, this work makes an important
step towards the final solution of web query log anonymization. All these research
work contribute to my dissertation by proposing an analysis of the tradeoff between

adequate privacy and sufficient utility of online user data in different scenarios.

6.2 DISCUSSIONS

In this section, I would like to discuss about some major concerns in my work.
Weakness of Differential Privacy. Theoretically, differential privacy is defined
as a strong standard |28, 33] which requires “unconditional privacy guarantees against

computationally unbounded adversaries” [41]. Although differential privacy is very
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powerful, the theory still requires the parameters to be carefully treated. Here I would
like to make a brief discussion about the weakness of differential privacy and how it
is inherited in my work.

Differential privacy is best for low-sensitivity scenarios [28]. This is a natural
inference from the principle of differential privacy. Specifically, the noise scale b used to
achieve differential privacy is usually proportional to % [28, 39, 66, 135|, which is the
ratio between the sensitivity value Af and the privacy scale e. Under certain privacy
requirements of fixed e value, the corresponding noise scale will be proportional to the
sensitivity value A f. In the case of high-sensitivity scenarios, we may have to add a lot
of noise to the results to achieve the same level of differential privacy, while hurting the
data accuracy and utility. Therefore, it is better to keep the sensitivity value relatively
low. Practically, I implement a variety of experiments to analyze the relationship
between privacy and utility by adjusting parameters dominating sensitivity (c¢; and
¢r) and the noise scale. I managed to find a good balance between privacy and utility
as well as keeping the sensitivity low.

Interactivity and non-interactivity. Another weakness of differential privacy
may be exposed in the interactive scenario with multiple release of the same data. This
is equivalent to the case in a database when we allow adaptive querying to the same
database. If we want to achieve differential privacy in such an interactive setting
allowing multiple releases (or database queries), we must inject the noise multiple

times [28]. And most importantly, we need to know the value of z up front, which
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may not be available in many cases. Therefore, my data release mechanism uses the
non-interactive setting [69] which allows only one released version of the same dataset.
Actually, all of the existing differential privacy work on query log anonymization uses
the non-interactive version to control the noise scale and avoid such weakness in
interactive differential privacy. However, even non-interactive differential privacy is
not perfect. Kifer and Machanavajjhala [65] reveal that differential privacy actually
really works when the individuals are truly independent from each other. Practically,
this assumption can be true in the scenario of query log anonymization since every
search engine user generates their own search log. In summary, differential privacy is
very powerful. Although there are some weaknesses in differential privacy that need
to be taken care of, I have addressed them in this work to minimize the influences of
the weakness of the mechanism.

Privacy Parameters. The € and ¢ values in differential privacy are essential
parameters that quantifies the privacy level of the query log anonymization mecha-
nisms. However, there are no fixed rules for how to determine the best values for € or
 in an algorithm [28]. Smaller values of the parameters leading to stronger privacy.
However, the selection of parameter values is task dependent. For instance, for an
anonymization algorithm satisfying e = 1.0-differential privacy, the probability ratio
of getting a certain output from two neighboring logs will be constrained in a e!®

range, which is an acceptable privacy level in the scenario of query log anonymiza-

tion.
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Session Log Anonymization. Session log anonymization by differential privacy
is challenging. One key obstacle in session log anonymization is that there are too
many potential combinations of search queries to form search sessions. Such sparsity
in frequency distribution makes the session log anonymization mechanism hard to
design. Actually, we may be able to propose new methods to organize and represent
the search sessions in order to reduce the sparsity in session logs. For instance, if
the anonymized session log will be used to support research about topic drifts during
a search session, we may simplify the task with a query classifier. With a query
classifier that allocates each search query into keywords or a topic in the knowl-
edge graph, we can generate a mapping from an infinite domain (natural language
queries) into a finite domain of topics. Hence, a search session can be represented as a
search path and transitions among finite topics. If such topic paths (rather than exact
contents of search queries) are enough to support the corresponding applications as
anonymization output, more research and mechanisms from the frequent sequence
mining domain may be able to apply to query/session log anonymization since they
are also working on the finite domain data. I wish my work can inspire more follow-up

research on session log anonymization.

6.3 FUTURE WORK

As I have mentioned in the introduction, the task of query log anonymization should

contribute to the greater goal of better generate, distribute and use of data.
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Query log anonymization is also valuable to support web mining tasks, which
could be a direction of my future work. In this section, I give a discussion of web
mining tasks that can be supported by the anonymized query logs and show some
preliminary results for the task of website clustering.

Query logs are used for some different web mining tasks. While testing the effec-
tiveness of using an anonymized query log for this different task is outside the scope of
this chapter, I conduct a preliminary analysis on a simple web page clustering task.
The goal of this task is to group n websites W = {w;...w,} using query log click
information from similar queries. I now sketch how to accomplish this and show that
I get meaningful clusters using the anonymized query log @)’. I pause to mention that
I purposefully do not conduct a complete analysis of this task. Instead, I demonstrate
that web mining utility is still possible using )’ and that future work should explore
more tasks from these anonymized query logs.

I consider a simple single-link hierarchical clustering algorithm [44] to cluster the
websites (URLSs) in @)’ using the generated query-click graph. In the query-click graph,
for each query ¢ and website w, I define C(q, w) as the number of clicks from query
q to website w. I also define C'(w) to be the total number of clicks to website w.
QSet(w) is defined as the set of queries leading to clicks on website w. Then, for
every website pair w; and ws, I define their similarities as the ratio of clicks from

cominon queries:
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Sim(wy, wy) =

Clgw) X Clg,w) (6.1)
. {qEQS(wlﬂm) q€QS (w1,w2) }

C(wl) ’ C(wg)

where QS (wy,ws) = QSet(w;y) [ QSet(wy). Once I compute the similarities, I use
single-linkage clustering to cluster the websites. I empirically tested different hierar-
chical clustering methods and chose single link clustering for this task because of the
sparsity of the query log click graph. The parameter settings for generating Q)" were:
query count threshold K = 100, query limit and click limit per user ¢ = c¢; = 100,
all noise scales b, = 10.

To evaluate the quality of the clusters, I clustered 1000 websites. The hierarchical
clustering algorithm merges two clusters when the websites have a high similarity
score: Sim(wy,wy) > 0.5. I hand labelled 10 clusters with class labels (Table 6.1
shows an example) and then measured purity. To compute purity, I used the class
label that is most frequent in the cluster and assumed that to be the correct class
label. The accuracy is the number of correctly assigned websites w; divided by the
total number of websites |W|. For the 10 clusters I hand labeled, there were a total of
59 websites in them. The purity was 0.76. This means that there were some websites
that were put into the wrong clusters, but the majority were not. In other words, a

meaningful structure for web mining can still be extracted from anonymized logs.
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Table 6.1: Some clustering results based on the anonymized query log.

(Cluster of Lyrics) (Cluster of Lottery)
lyrics.astraweb.com lottery.yahoo.com
www.lyricsfreak.com www.flottery.com
www.lyrics.com www.lotteryusa.com
www.azlyrics.com www.flalottery.com
www.sing365.com (Cluster of Banks)
www.musicsonglyrics.com | www.bankone.com
www.lyricsdownload.com | www.chase.com

This work shows that the differentially private query log can well support typical
mining tasks such as website clustering. As future work, I will research how query log

anonymization could be better utilized to help research in more related domains.

6.4 RESOURCES

In this section, I provide some additional resources related to this thesis.

e [ gave a Tutorial “Differential Privacy for Information Retrieval” [123| with my
advisor professor Grace Hui Yang in the 3rd ACM International Conference on
the Theory of Information Retrieval (ICTIR 2017), Amsterdam, Netherlands.
Oct 1, 2017. T will give an updated version of this Tutorial in the 11th ACM
International Conference on Web Search and Data Mining (WSDM 2018), Los

Angeles, USA. Feb 5, 2018.

e As a student organizer, I contributed to the first, second, and third “Privacy-

Preserving IR: When Information Retrieval Meets Privacy and Security” Work-
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shops PPIR’14 [96], PPIR’15 [122] and PPIR’16 [125] during the 37-39th Inter-

national ACM SIGIR Conferences (SIGIR 2014 - 2016).

e Our website of detailed related resources in privacy-preserving Information
Retrieval is located at hitps://privacypreservingir.org/. It includes our publica-
tions in privacy-preserving Information Retrieval and more information about

the tutorial in ICTIR 2017 and workshops in SIGIR 2014 - 2016.

6.5 IMPACT

Concern with privacy is not a new issue. It has been developing since human being
could see and hear (collect data), write and remember (store data), think and under-
stand (analyze data), or talk and trade (distribute data). The fact is, the rapid growth
of computer science and informatics technologies in recent years, especially the spread
of online services such as search engines and social network services, has fundamentally
changed how we collect data, store data, analyze data, and distribute data. That’s
the reason for the rising privacy concern in our society nowadays. It also shows the
importance of my research and how much impact we may achieve if we can contribute
to resolving the massive privacy concern in the era of big data.

After the inappropriate data release from AOL in 2006, search engine companies
became much more serious about the privacy of their web search data. They have
been hesitating to release web search query logs to third-party researchers to avoid

privacy risks, which leads to a significant shortage of real search engine query logs in
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the research community. In this dissertation, I focus on query log anonymization by
differential privacy to address such privacy concerns with query logs. In my research,
I propose privacy-preserving mechanisms to reduce the privacy risks by anonymizing
query logs and help web users to understand the potential privacy risks in online ser-
vices. I use typical real IR applications, including ad-hoc retrieval, query suggestion,
and session search, to quantify the utility of the anonymized query log to evaluate
how useful the query log anonymization mechanisms are.

I hope the research can encourage web search engine companies to release query
logs for research purposes, inspire our IR community to develop better approaches
to address the rising privacy concerns in multiple IR scenarios and applications and
help web users in general to gain better understanding of the potential privacy risks
of their online behavior.

Furthermore, I hope this work can inspire the IR community to use more advanced
techniques such as differential privacy from other research fields. As I have mentioned
in the introduction and related work, although there have been a few implementa-
tions of differential privacy in data mining research, the use of differential privacy
in IR research has just started. Recent research including this work has shown that
differential privacy can be well used to address privacy concerns in some IR research
topics such as query log anonymization and location data privacy. I hope this work

will inspire more researchers in the IR community to investigate what other research
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problems may benefit from differential privacy or other advanced mechanisms from
other research domains.

In summary, by resolving the privacy concerns from the view of both data owners
(search engine companies) and data providers (web service users), my work aims to
address the privacy concern and contribute to the improvement of how we manage
information. I hope this work can not only benefit the research in this particular task
of query log anonymization but also can inspire more research in privacy-preserving

Information Retrieval and related data-driven domains.
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